1
|
Yang H, Wang W, Xiao J, Yang R, Feng L, Xu H, Xu L, Xing Y. ROS-responsive injectable hydrogels loaded with exosomes carrying miR-4500 reverse liver fibrosis. Biomaterials 2025; 314:122887. [PMID: 39405826 DOI: 10.1016/j.biomaterials.2024.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 11/10/2024]
Abstract
The reversal of liver fibrosis requires effective strategies to reduce oxidative stress and inhibition of hepatic stellate cell (HSC) activation. MiR-4500 regulates pathological angiogenesis and collagen mRNA stability, with the potential to inhibit fibrosis. Herein, we explored the inhibition of HSC activation in vitro by exosomes (Exos) carrying miR-4500 and encapsulated ExosmiR-4500 in an intelligent injectable hydrogel with biological activity and reactive oxygen species (ROS) responsiveness for application in oxidative stress environments. Briefly, reversible boronic ester bonds were integrated into gelatin-based hydrogels through dynamic crosslinking of quaternized chitosan (QCS) and 4-carboxyphenylboronic acid (CPBA)-modified gelatin. The QCS-CPBA-Gelatin (QCG) hydrogel scavenged excess ROS from the local microenvironment and released ExosmiR-4500 through the dissociation of boronic ester bonds, providing a favorable microenvironment and in situ sustained-release drug delivery system for ExosmiR-4500. The results showed that QCG@ExosmiR-4500 hydrogel has biocompatibility, biodegradability, and slow-release ability, which could effectively clear ROS and inhibit HSC activation and pathological angiogenesis in vitro and in vivo. Furthermore, transcriptome analysis suggests that the pharmacological mechanism of the QCG@ExosmiR-4500 hydrogel is mainly related to anti-oxidation, anti-angiogenesis, anti-fibrosis processes, and signaling pathways. Thus, our study demonstrates that an intelligently responsive ExosmiR-4500 delivery system based on injectable hydrogels is a promising strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huili Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Wanshun Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jiacong Xiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Rong Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Lian Feng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Hongling Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Liubin Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China.
| |
Collapse
|
2
|
Avdonin PP, Tsvetaeva NV, Goncharov NV, Rybakova EY, Trufanov SK, Tsitrina AA, Avdonin PV. Von Willebrand Factor in Health and Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract—
Von Willebrand factor (vWF), the key component of hemostasis, is synthesized in endothelial cells and megakaryocytes and released into the blood as high molecular weight multimeric glycoproteins weighing up to 20 million Daltons. Blood plasma metalloprotease ADAMTS13 cleaves ultra-large vWF multimers to smaller multimeric and oligomeric molecules. The vWF molecules attach to the sites of damage at the surface of arterioles and capillaries and unfold under conditions of shear stress. On the unfolded vWF molecule, the regions interacting with receptors on the platelet membrane are exposed. After binding to the vWF filaments, platelets are activated; platelets circulating in the vessels are additionally attached to them, leading to thrombus formation, blocking of microvessels, and cessation of bleeding. This review describes the history of the discovery of vWF, presents data on the mechanisms of vWF secretion and its structure, and characterizes the processes of vWF metabolism in the body under normal and pathological conditions.
Collapse
|