1
|
Baturina GS, Katkova LE, Palchikova IG, Kolosova NG, Solenov EI, Iskakov IA. Mitochondrial Antioxidant SkQ1 Improves Hypothermic Preservation of the Cornea. BIOCHEMISTRY (MOSCOW) 2021; 86:382-388. [PMID: 33838637 DOI: 10.1134/s0006297921030135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diseases of the cornea are a frequent cause of blindness worldwide. Keratoplasty is an efficient method for treating severely damaged cornea. The functional competence of corneal endothelial cells is crucial for successful grafting, which requires improving the media for the hypothermic cornea preservation, as well as developing the methods for the evaluation of the corneal functional properties. The transport of water and ions by the corneal endothelium is important for the viability and optic properties of the cornea. We studied the impact of SkQ1 on the equilibrium sodium concentration in the endothelial cells after hypothermic preservation of pig cornea at 4°C for 1, 5, and 10 days in standard Eusol-C solution. The intracellular sodium concentration in the endothelial cells was assayed using the fluorescent dye Sodium Green; the images were analyzed with the custom-designed CytoDynamics computer program. The concentrations of sodium in the pig corneal endothelium significantly increased after 10 days of hypothermic preservation, while addition of 1.0 nM SkQ1 to the preservation medium decreased the equilibrium concentration of intracellular sodium (at 37°C). After 10 days of hypothermic preservation, the permeability of the plasma membrane for sodium decreased in the control cells, but not in the cells preserved in the presence of 1 nM SkQ1. Therefore, SkQ1 increased the ability of endothelial cells to restore the intracellular sodium concentration, which makes SkQ1 a promising agent for facilitating retention of the functional competence of endothelial cells during cold preservation.
Collapse
Affiliation(s)
- Galina S Baturina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Lubov E Katkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina G Palchikova
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Technological Design Institute of Scientific Instrument Engineering, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630058, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Evgeniy I Solenov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.,Novosibirsk State Technical University, Novosibirsk, 630087, Russia
| | - Igor A Iskakov
- Fyodorov Eye Microsurgery Complex, Novosibirsk, 630096, Russia
| |
Collapse
|
2
|
Baturina GS, Palchikova IG, Konev AA, Smirnov ES, Katkova LE, Solenov EI, Iskakov IА. STUDY OF THE EFFECT OF HYPOTHERMIC CONSERVATION ON THE INTRACELLULAR SODIUM CONCENTRATION IN THE ENDOTHELIUM OF CORNEAL TRANSPLANTS. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Endothelial keratoplasty has become the treatment of choice for corneal endothelial dysfunction. Advancements in the surgical treatment of corneal endothelial diseases depend on progress in graft conservation and its related advantages in assessing the suitability of grafts for transplantation. Transport of water and ions by cornea endothelium is important for the optic properties of cornea. In this work, we study the intracellular sodium concentration in cornea endothelial cells in samples of pig cornea that underwent hypothermic conservation for 1 and 10 days and endothelial cells of human cornea grafts after 10-day conservation. The concentration of intracellular sodium in preparations of endothelial cells was assayed using fluorescent dye SodiumGreen. The fluorescent images were analyzed with the custom-made computer program CytoDynamics. An increased level of intracellular sodium was shown in the endothelium after 10-day conservation in comparison with one-day conservation (pig samples). Sodium permeability of pig endothelial cell plasma membranes significantly decreased in these samples. Assessment of intracellular sodium in human cornea endothelium showed a higher level – as was in analogues pig samples of the corneal endothelium. The assay of the intracellular sodium balance concentration established in endothelial cells after hypothermic conservation in mediums L-15 and Optisol-GS showed a significant advantage of specialized me dium Optisol-GS. The balanced intracellular concentration after 10 days of hypothermic conservation was significantly lower in cells incubated at 4 °C in Optisol-GS (L-15, 128 ± 14, n = 15; Optisol-GS, 108 ± 14, n = 11; mM, p < 0.001). Intracellular sodium concentration could be a useful parameter for assessing cornea endothelium cell viability.
Collapse
|
3
|
Fernández JM, Di Giusto G, Kalstein M, Melamud L, Rivarola V, Ford P, Capurro C. Cell volume regulation in cultured human retinal Müller cells is associated with changes in transmembrane potential. PLoS One 2013; 8:e57268. [PMID: 23451196 PMCID: PMC3581454 DOI: 10.1371/journal.pone.0057268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/18/2013] [Indexed: 01/18/2023] Open
Abstract
Müller cells are mainly involved in controlling extracellular homeostasis in the retina, where intense neural activity alters ion concentrations and osmotic gradients, thus favoring cell swelling. This increase in cell volume is followed by a regulatory volume decrease response (RVD), which is known to be partially mediated by the activation of K+ and anion channels. However, the precise mechanisms underlying osmotic swelling and subsequent cell volume regulation in Müller cells have been evaluated by only a few studies. Although the activation of ion channels during the RVD response may alter transmembrane potential (Vm), no studies have actually addressed this issue in Müller cells. The aim of the present work is to evaluate RVD using a retinal Müller cell line (MIO-M1) under different extracellular ionic conditions, and to study a possible association between RVD and changes in Vm. Cell volume and Vm changes were evaluated using fluorescent probe techniques and a mathematical model. Results show that cell swelling and subsequent RVD were accompanied by Vm depolarization followed by repolarization. This response depended on the composition of extracellular media. Cells exposed to a hypoosmotic solution with reduced ionic strength underwent maximum RVD and had a larger repolarization. Both of these responses were reduced by K+ or Cl− channel blockers. In contrast, cells facing a hypoosmotic solution with the same ionic strength as the isoosmotic solution showed a lower RVD and a smaller repolarization and were not affected by blockers. Together, experimental and simulated data led us to propose that the efficiency of the RVD process in Müller glia depends not only on the activation of ion channels, but is also strongly modulated by concurrent changes in the membrane potential. The relationship between ionic fluxes, changes in ion permeabilities and ion concentrations –all leading to changes in Vm– define the success of RVD.
Collapse
Affiliation(s)
- Juan M. Fernández
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gisela Di Giusto
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Maia Kalstein
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Melamud
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Consultorio de Neuroinmunología, Centro Universitario de Neurología Dr. J.M. Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Rivarola
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Paula Ford
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Capurro
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|