1
|
ALaqeel NK. Antioxidants from different citrus peels provide protection against cancer. BRAZ J BIOL 2023; 84:e271619. [PMID: 37436265 DOI: 10.1590/1519-6984.271619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 07/13/2023] Open
Abstract
Cancer is one of the leading causes of death. Despite significant advancements in the discovery of medications for the treatment of cancer, these drugs are hindered by applicability and efficacy issues and frequently exhibit major side effects that can further impair patients 'quality of life. Therefore, the development of therapeutically sound anti-cancer medicines derived from natural products has gained prominence in the field of functional foods. Some of these compounds have shown efficacy in the prevention and treatment of cancer as well as low toxicity. Additionally, many recent studies have explored the recycling of agro-industrial waste to create bioactive chemicals. Citrus peels are produced in vast quantities in the food processing sector; due to their abundance of flavonoids, they may be inexpensive sources of protection against several cancers. Citrus is a common type of fruit that contains a variety of nutrients. In particular, the antioxidant chemicals found in citrus peel have been identified as potential cancer-fighting agents. Antioxidant substances such as flavonoids prevent the development of cancer by inhibiting the metastatic cascade, decreasing the mobility of cancer cells in the circulatory system, promoting apoptosis, and suppressing angiogenesis. To explore the most effective uses of citrus peel-derived antioxidants, this review presents background information, an overview of the role of citrus antioxidants in cancer therapy, and a discussion of the key underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nouf Khalifa ALaqeel
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Biology, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|
3
|
Sousa VS, Ribau Teixeira M. Metal-based engineered nanoparticles in the drinking water treatment systems: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136077. [PMID: 31863978 DOI: 10.1016/j.scitotenv.2019.136077] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The emergence of nanotechnologically-enabled materials, compounds or products inevitably leads to engineered nanoparticles (ENPs) released into surface waters. ENPs have already been detected in wastewater streams, drinking water sources and even in tap water at concentrations in the ng/L and μg/L range, making the latter a potential route for humans. The presence of ENPs in raw waters raises concerns over the possibility that ENPs might pose a hazard to the quality and security of drinking water and whether drinking water treatment plants (DWTPs) are prepared to handle this problem. Therefore, it is essential to critically evaluate if ENPs can be effectively removed through water treatment processes to control environmental and human health risks associated with their release. This review includes a summary of the available information on production, presence, potential hazards to human health and environment, and release and behaviour of metal-based ENPs in surface waters and drinking water. In addition, the most extensively studied water treatment processes to remove metal-based ENPs, specifically conventional and advanced processes, are discussed and highlighted in detail. Furthermore, this work identifies the research gaps regarding ENPs removal in DWTPs and discusses future aspects of ENPs in water treatment.
Collapse
Affiliation(s)
- Vânia Serrão Sousa
- CENSE, Center for Environmental and Sustainability Research, Portugal; University of Algarve, Faculty of Sciences and Technology, bldg 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Margarida Ribau Teixeira
- CENSE, Center for Environmental and Sustainability Research, Portugal; University of Algarve, Faculty of Sciences and Technology, bldg 7, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
4
|
Ray A, Khalid MA, Demčenko A, Daloglu M, Tseng D, Reboud J, Cooper JM, Ozcan A. Holographic detection of nanoparticles using acoustically actuated nanolenses. Nat Commun 2020; 11:171. [PMID: 31949134 PMCID: PMC6965092 DOI: 10.1038/s41467-019-13802-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
The optical detection of nanoparticles, including viruses and bacteria, underpins many of the biological, physical and engineering sciences. However, due to their low inherent scattering, detection of these particles remains challenging, requiring complex instrumentation involving extensive sample preparation methods, especially when sensing is performed in liquid media. Here we present an easy-to-use, high-throughput, label-free and cost-effective method for detecting nanoparticles in low volumes of liquids (25 nL) on a disposable chip, using an acoustically actuated lens-free holographic system. By creating an ultrasonic standing wave in the liquid sample, placed on a low-cost glass chip, we cause deformations in a thin liquid layer (850 nm) containing the target nanoparticles (≥140 nm), resulting in the creation of localized lens-like liquid menisci. We also show that the same acoustic waves, used to create the nanolenses, can mitigate against non-specific, adventitious nanoparticle binding, without the need for complex surface chemistries acting as blocking agents.
Collapse
Affiliation(s)
- Aniruddha Ray
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
| | - Muhammad Arslan Khalid
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Andriejus Demčenko
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Mustafa Daloglu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Derek Tseng
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Julien Reboud
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Jonathan M Cooper
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
- David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Frosiniuk A, Kolchanov DS, Milichko VA, Vinogradov AV, Vinogradov VV. Optical interference-based sensors for the visual detection of nano-scale objects. NANOSCALE 2019; 11:6343-6351. [PMID: 30887996 DOI: 10.1039/c9nr00616h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we present a new concept for the simple visual detection of nano-scale objects in solutions. To achieve this goal, we developed chromogen-free interference-based sensors that provided a color visible reaction directly after the interaction of the analyte with the substrate. The effect is based on the strong optical interference occurring at the interface between the inkjet printed sol-gel titania film (a layer with high refractive index) and the adsorbed nano-sized objects (layer with low refractive index), which can be detected even with the naked eye. Herein, we have developed a synthetic strategy for the inkjet printing of interference sensors with controllable color change through thickness adjustment.
Collapse
Affiliation(s)
- Anna Frosiniuk
- ITMO University, International Laboratory "Solution Chemistry of Advanced Materials and Technologies", Lomonosova 9, 191002, Saint Petersburg, Russia.
| | | | | | | | | |
Collapse
|
6
|
Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 2016; 904:10-32. [DOI: 10.1016/j.aca.2015.11.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
7
|
Hendrickson OD, Zherdev AV, Gmoshinskii IV, Dzantiev BB. Fullerenes: In vivo studies of biodistribution, toxicity, and biological action. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s199507801406010x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Martínez CR, Rodríguez TL, Zhurbenko R, Valdés IA, Gontijo SML, Gomes ADM, Suarez DF, Sinisterra RD, Cortés ME. Development of a calcium phosphate nanocomposite for fast fluorogenic detection of bacteria. Molecules 2014; 19:13948-64. [PMID: 25197932 PMCID: PMC6271650 DOI: 10.3390/molecules190913948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022] Open
Abstract
Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a nutritive mixture and the fluorogenic substrate. Calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture for the early detection of bacteria by visual as well as fluorescence spectroscopy techniques. The composite was obtained by combining calcium phosphate nanoparticles (Ca:P ratio, 1.33:1) with a nutritive mixture of protein hydrolysates and carbon sources, which promote fast bacterial multiplication, and the fluorogenic substrate 4-methylumbellipheryl-β-D-glucuronide (MUG). The composite had an average particle size of 173.2 nm and did not show antibacterial activity against Gram-negative or Gram-positive bacteria. After an Escherichia coli suspension was in contact with the composite for 60-90 min, fluorescence detected under UV light or by fluorescence spectrophotometer indicated the presence of bacteria. Intense fluorescence was observed after incubation for a maximum of 90 min. Thus, this calcium phosphate nanocomposite system may be useful as a model for the development of other nanoparticle composites for detection of early bacterial adhesion.
Collapse
Affiliation(s)
- Claudio R Martínez
- Centro Nacional de Biopreparados, Carretera a Beltrán Km 1 1/2, Bejucal, Mayabeque, Apartado 6048, Cuba.
| | - Tamara L Rodríguez
- Centro Nacional de Biopreparados, Carretera a Beltrán Km 1 1/2, Bejucal, Mayabeque, Apartado 6048, Cuba.
| | - Raisa Zhurbenko
- Centro Nacional de Biopreparados, Carretera a Beltrán Km 1 1/2, Bejucal, Mayabeque, Apartado 6048, Cuba.
| | - Ivonne A Valdés
- Centro Nacional de Biopreparados, Carretera a Beltrán Km 1 1/2, Bejucal, Mayabeque, Apartado 6048, Cuba.
| | - Sávio M L Gontijo
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Alinne D M Gomes
- Chemistry Department, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Diego F Suarez
- Chemistry Department, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Rubén D Sinisterra
- Chemistry Department, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Maria E Cortés
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Zhornik EV, Baranova LA, Strukova AM, Loiko EN, Volotovski ID. ROS induction and structural modification in human lymphocyte membrane under the influence of carbon nanotubes. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912030220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|