1
|
Gudkov SV, Li R, Serov DA, Burmistrov DE, Baimler IV, Baryshev AS, Simakin AV, Uvarov OV, Astashev ME, Nefedova NB, Smolentsev SY, Onegov AV, Sevostyanov MA, Kolmakov AG, Kaplan MA, Drozdov A, Tolordava ER, Semenova AA, Lisitsyn AB, Lednev VN. Fluoroplast Doped by Ag 2O Nanoparticles as New Repairing Non-Cytotoxic Antibacterial Coating for Meat Industry. Int J Mol Sci 2023; 24:ijms24010869. [PMID: 36614309 PMCID: PMC9821803 DOI: 10.3390/ijms24010869] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Foodborne infections are an important global health problem due to their high prevalence and potential for severe complications. Bacterial contamination of meat during processing at the enterprise can be a source of foodborne infections. Polymeric coatings with antibacterial properties can be applied to prevent bacterial contamination. A composite coating based on fluoroplast and Ag2O NPs can serve as such a coating. In present study, we, for the first time, created a composite coating based on fluoroplast and Ag2O NPs. Using laser ablation in water, we obtained spherical Ag2O NPs with an average size of 45 nm and a ζ-potential of -32 mV. The resulting Ag2O NPs at concentrations of 0.001-0.1% were transferred into acetone and mixed with a fluoroplast-based varnish. The developed coating made it possible to completely eliminate damage to a Teflon cutting board. The fluoroplast/Ag2O NP coating was free of defects and inhomogeneities at the nano level. The fluoroplast/Ag2O NP composite increased the production of ROS (H2O2, OH radical), 8-oxogualnine in DNA in vitro, and long-lived active forms of proteins. The effect depended on the mass fraction of the added Ag2O NPs. The 0.01-0.1% fluoroplast/NP Ag2O coating exhibited excellent bacteriostatic and bactericidal properties against both Gram-positive and Gram-negative bacteria but did not affect the viability of eukaryotic cells. The developed PTFE/NP Ag2O 0.01-0.1% coating can be used to protect cutting boards from bacterial contamination in the meat processing industry.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- All-Russia Research Institute of Phytopathology of the Russian Academy of Sciences, Institute St., 5, Big Vyazyomy, 143050 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
| | - Ruibin Li
- School for Radiologic and Interdisciplinary Science, Soochow University, Suzhou 215123, China
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Ilya V. Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| | - Natalia B. Nefedova
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
- Federal State Budget Educational Institution of Higher Education Pushchino State Institute of Natural Science, Science Av. 3, 142290 Pushchino, Russia
| | | | - Andrey V. Onegov
- Mari State University, pl. Lenina, 1, 424001 Yoshkar-Ola, Russia
| | - Mikhail A. Sevostyanov
- All-Russia Research Institute of Phytopathology of the Russian Academy of Sciences, Institute St., 5, Big Vyazyomy, 143050 Moscow, Russia
- A.A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Alexey G. Kolmakov
- A.A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mikhail A. Kaplan
- A.A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Andrey Drozdov
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, Ulitsa Ivana Chernykh, 31–33, lit. A, 198095 St. Petersburg, Russia
| | - Eteri R. Tolordava
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, Talalikhina St., 26, 109316 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, Talalikhina St., 26, 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, Talalikhina St., 26, 109316 Moscow, Russia
| | - Vasily N. Lednev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
2
|
Serov DA, Baimler IV, Burmistrov DE, Baryshev AS, Yanykin DV, Astashev ME, Simakin AV, Gudkov SV. The Development of New Nanocomposite Polytetrafluoroethylene/Fe 2O 3 NPs to Prevent Bacterial Contamination in Meat Industry. Polymers (Basel) 2022; 14:polym14224880. [PMID: 36433009 PMCID: PMC9695638 DOI: 10.3390/polym14224880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
The bacterial contamination of cutting boards and other equipment in the meat processing industry is one of the key reasons for reducing the shelf life and consumer properties of products. There are two ways to solve this problem. The first option is to create coatings with increased strength in order to prevent the formation of micro damages that are favorable for bacterial growth. The second possibility is to create materials with antimicrobial properties. The use of polytetrafluoroethylene (PTFE) coatings with the addition of metal oxide nanoparticles will allow to the achieving of both strength and bacteriostatic effects at the same time. In the present study, a new coating based on PTFE and Fe2O3 nanoparticles was developed. Fe2O3 nanoparticles were synthesized by laser ablation in water and transferred into acetone using the developed procedures. An acetone-based colloidal solution was mixed with a PTFE-based varnish. Composites with concentrations of Fe2O3 nanoparticles from 0.001-0.1% were synthesized. We studied the effect of the obtained material on the generation of ROS (hydrogen peroxide and hydroxyl radicals), 8-oxoguanine, and long-lived active forms of proteins. It was found that PTFE did not affect the generation of all the studied compounds, and the addition of Fe2O3 nanoparticles increased the generation of H2O2 and hydroxyl radicals by up to 6 and 7 times, respectively. The generation of 8-oxoguanine and long-lived reactive protein species in the presence of PTFE/Fe2O3 NPs at 0.1% increased by 2 and 3 times, respectively. The bacteriostatic and cytotoxic effects of the developed material were studied. PTFE with the addition of Fe2O3 nanoparticles, at a concentration of 0.001% or more, inhibited the growth of E. coli by 2-5 times compared to the control or PTFE without NPs. At the same time, PTFE, even with the addition of 0.1% Fe2O3 nanoparticles, did not significantly impact the survival of eukaryotic cells. It was assumed that the resulting composite material could be used to cover cutting boards and other polymeric surfaces in the meat processing industry.
Collapse
|
4
|
Sharapov MG, Gudkov SV, Lankin VZ, Novoselov VI. Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1418-1433. [PMID: 34906041 DOI: 10.1134/s0006297921110067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we discuss the pathogenesis of some socially significant diseases associated with the development of oxidative stress, such as atherosclerosis, diabetes, and radiation sickness, as well as the possibilities of the therapeutic application of low-molecular-weight natural and synthetic antioxidants for the correction of free radical-induced pathologies. The main focus of this review is the role of two phylogenetically close families of hydroperoxide-reducing antioxidant enzymes peroxiredoxins and glutathione peroxidases - in counteracting oxidative stress. We also present examples of the application of exogenous recombinant antioxidant enzymes as therapeutic agents in the treatment of pathologies associated with free-radical processes and discuss the prospects of the therapeutic use of exogenous antioxidant enzymes, as well as the ways to improve their therapeutic properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey V Gudkov
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, 603022, Russia.,All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, 143050, Russia
| | - Vadim Z Lankin
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, 121552, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
5
|
Comparative Study of Protective Action of Exogenous 2-Cys Peroxiredoxins (Prx1 and Prx2) Under Renal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2020; 9:antiox9080680. [PMID: 32751232 PMCID: PMC7465264 DOI: 10.3390/antiox9080680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of ischemia-reperfusion (I/R) injuries is based on oxidative stress caused by a sharp increase in the concentration of free radicals, reactive oxygen species (ROS) and secondary products of free radical oxidation of biological macromolecules during reperfusion. Application of exogenous antioxidants lowers the level of ROS in the affected tissues, suppresses or adjusts the course of oxidative stress, thereby substantially reducing the severity of I/R injury. We believe that the use of antioxidant enzymes may be the most promising line of effort since they possess higher efficiency than low molecular weight antioxidants. Among antioxidant enzymes, of great interest are peroxiredoxins (Prx1–6) which reduce a wide range of organic and inorganic peroxide substrates. In an animal model of bilateral I/R injury of kidneys (using histological, biochemical, and molecular biological methods) it was shown that intravenous administration of recombinant typical 2-Cys peroxiredoxins (Prx1 and Prx2) effectively reduces the severity of I/R damage, contributing to the normalization of the structural and functional state of the kidneys and an almost 2-fold increase in the survival of experimental animals. The use of recombinant Prx1 or Prx2 can be an efficient approach for the prevention and treatment of renal I/R injury.
Collapse
|
9
|
Sharapov MG, Novoselov VI, Gudkov SV. Radioprotective Role of Peroxiredoxin 6. Antioxidants (Basel) 2019; 8:E15. [PMID: 30621289 PMCID: PMC6356814 DOI: 10.3390/antiox8010015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a member of an evolutionary ancient family of peroxidase enzymes with diverse functions in the cell. Prdx6 is an important enzymatic antioxidant. It reduces a wide range of peroxide substrates in the cell, thus playing a leading role in the maintenance of the redox homeostasis in mammalian cells. Beside peroxidase activity, Prdx6 has been shown to possess an activity of phospholipase A2, an enzyme playing an important role in membrane phospholipid metabolism. Moreover, Prdx6 takes part in intercellular and intracellular signal transduction due to its peroxidase and phospholipase activity, thus facilitating the initiation of regenerative processes in the cell, suppression of apoptosis, and activation of cell proliferation. Being an effective and important antioxidant enzyme, Prdx6 plays an essential role in neutralizing oxidative stress caused by various factors, including action of ionizing radiation. Endogenous Prdx6 has been shown to possess a significant radioprotective potential in cellular and animal models. Moreover, intravenous infusion of recombinant Prdx6 to animals before irradiation at lethal or sublethal doses has shown its high radioprotective effect. Exogenous Prdx6 effectively alleviates the severeness of radiation lesions, providing normalization of the functional state of radiosensitive organs and tissues, and leads to a significant elevation of the survival rate of animals. Prdx6 can be considered as a potent and promising radioprotective agent for reducing the pathological effect of ionizing radiation on mammalian organisms. The radioprotective properties and mechanisms of radioprotective action of Prdx6 are discussed in the current review.
Collapse
Affiliation(s)
- Mars G Sharapov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Vladimir I Novoselov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Sergey V Gudkov
- Wave Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
- Department of Experimental Clinical Studies, Moscow Regional Research and Clinical Institute (MONIKI), 129110 Moscow, Russia.
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod, Russia.
| |
Collapse
|