1
|
Bulychev AA, Strelets TS. Oscillations of chlorophyll fluorescence after plasma membrane excitation in Chara originate from nonuniform composition of signaling metabolites in the streaming cytoplasm. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149019. [PMID: 37924923 DOI: 10.1016/j.bbabio.2023.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Excitable cells of higher plants and characean algae respond to stressful stimuli by generating action potentials (AP) whose regulatory influence on chlorophyll (Chl) fluorescence and photosynthesis extends over tens of minutes. Unlike plant leaves where the efficiency of photosystem II reaction (YII) undergoes a separate reversible depression after an individual AP, characean algae exhibit long-lasting oscillations of YII after firing AP, provided that Chl fluorescence is measured on microscopic cell regions. Internodal cells of charophytes feature an extremely fast cytoplasmic streaming that stops immediately during the spike and recovers within ~10 min after AP. In this study a possibility was examined that multiple oscillations of YII and Chl fluorescence parameters (F', Fm') result from the combined influence of metabolic rearrangements in chloroplasts and the cyclosis cessation-recovery cycle induced by the Ca2+ influx during AP. It is shown that the AP-induced Fm' and YII oscillations disappear when the fluidic communications between the analyzed area (AOI) and surrounding cell regions are restricted or eliminated. The microfluidic signaling was manipulated in two ways: by narrowing the illuminated cell area and by arresting the cytoplasmic streaming with cytochalasin D (CD). The inhibition of Fm' and YII oscillations was not caused by the loss of cell excitability, since CD-treated cells retained the capacity of AP generation. The mechanism of AP-induced oscillations of YII and Chl fluorescence seems to involve the lateral microfluidic transport of signaling substances in combination with the distribution pattern of these substances that was enhanced during the period of streaming cessation.
Collapse
|
2
|
Olson W, He R, Benedetto A, Iskratsch T, Shaitan K, Hall D. Editors' roundup: October 2022. Biophys Rev 2022; 14:1085-1091. [PMID: 36345281 PMCID: PMC9636339 DOI: 10.1007/s12551-022-01002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 10/17/2022] Open
Abstract
This commentary constitutes the October edition of the 'Editors' roundup'-a multi-author omnibus of personal recommendations to interesting biophysics-related articles contributed by members of the editorial boards of leading international biophysics journals. The present commentary contains contributions from Progress in Biochemistry and Biophysics (an official journal of the Biophysical Society of China), European Biophysics Journal (the official journal of the European Biophysical Societies Association), Biophysical Reviews (the official IUPAB journal), and Biophysics (an official journal of the Russian Academy of Sciences). This edition of the Editors' Roundup also contains a new section from an editor at large who has provided selections from a number of journals on a single thematic topic.
Collapse
Affiliation(s)
- Wilma Olson
- Department of Chemistry and Chemical Biology, the State University of New Jersey, Rutgers Piscataway, NB, NJ USA
- Center for Quantitative Biology, the State University of New Jersey, Rutgers Piscataway, NB, NJ USA
| | - Rongqiao He
- Basic College of Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
- CAS Key Laboratory of Mental Health, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Antonio Benedetto
- School of Physics, University College Dublin, Dublin, D04 N2E5 Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 N2E5 Ireland
- Department of Science, University of Roma Tre, 00146 Rome, Italy
- Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Thomas Iskratsch
- School of Engineering and Material Sciences, Queen Mary University of London, London, England UK
| | - Konstantin Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| |
Collapse
|