1
|
Shishkina LN, Mazurkov OY, Bormotov NI, Skarnovich MO, Serova OA, Mazurkova NA, Skarnovich MA, Chernonosov AA, Selivanov BA, Tikhonov AY, Gamaley SG, Shimina GG, Sysoyeva GM, Taranov OS, Danilenko ED, Agafonov AP, Maksyutov RA. Safety and Pharmacokinetics of the Substance of the Anti-Smallpox Drug NIOCH-14 after Oral Administration to Laboratory Animals. Viruses 2023; 15:205. [PMID: 36680245 PMCID: PMC9863109 DOI: 10.3390/v15010205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Since most of the modern human population has no anti-smallpox immunity, it is extremely important to develop and implement effective drugs for the treatment of smallpox and other orthopoxvirus infections. The objective of this study is to determine the main characteristics of the chemical substance NIOCH-14 and its safety and bioavailability in the body of laboratory animals. METHODS The safety of NIOCH-14 upon single- or multiple-dose intragastric administration was assessed according to its effect on the main hematological and pathomorphological parameters of laboratory mice and rats. In order to evaluate the pharmacokinetic parameters of NIOCH-14 administered orally, a concentration of ST-246, the active metabolite of NIOCH-14, in mouse blood and organs was determined by tandem mass spectrometry and liquid chromatography. RESULTS The intragastric administration of NIOCH-14 at a dose of 5 g/kg body weight caused neither death nor signs of intoxication in mice. The intragastric administration of NIOCH-14 to mice and rats at doses of 50 and 150 µg/g body weight either as a single dose or once daily during 30 days did not cause animal death or critical changes in hematological parameters and the microstructure of internal organs. The tissue availability of NIOCH-14 administered orally to the mice at a dose of 50 µg/g body weight, which was calculated according to concentrations of its active metabolite ST-246 for the lungs, liver, kidney, brain, and spleen, was 100, 69.6, 63.3, 26.8 and 20.3%, respectively. The absolute bioavailability of the NIOCH-14 administered orally to mice at a dose of 50 µg/g body weight was 22.8%. CONCLUSION Along with the previously determined efficacy against orthopoxviruses, including the smallpox virus, the substance NIOCH-14 was shown to be safe and bioavailable in laboratory animal experiments.
Collapse
Affiliation(s)
- Larisa N. Shishkina
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Oleg Yu. Mazurkov
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Nikolai I. Bormotov
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Maksim O. Skarnovich
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Olga A. Serova
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Natalia A. Mazurkova
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Maria A. Skarnovich
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Alexander A. Chernonosov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Boris A. Selivanov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey Ya. Tikhonov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana G. Gamaley
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Galina G. Shimina
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Galina M. Sysoyeva
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Oleg S. Taranov
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Elena D. Danilenko
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Alexander P. Agafonov
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| | - Rinat A. Maksyutov
- Federal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Koltsovo, Russia
| |
Collapse
|
2
|
Mazurkov OY, Shishkina LN, Bormotov NI, Skarnovich MO, Serova OA, Mazurkova NA, Chernonosov AA, Tikhonov AY, Selivanov BA. Estimation of Absolute Bioavailability of the Chemical Substance of the Anti-Smallpox Preparation NIOCH-14 in Mice. Bull Exp Biol Med 2020; 170:207-210. [PMID: 33263846 DOI: 10.1007/s10517-020-05034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 11/30/2022]
Abstract
We compared absolute bioavailability of the chemical substance of the anti-smallpox preparation NIOCH-14 and chemical compound ST-246 active against orthopoxviruses after oral administration to mice in doses of 10 and 50 μg/g and intravenous administration to mice in a dose of 2 μg/g body weight. The absolute bioavailability of NIOCH-14 is comparable with the absolute bioavailability of ST-246.
Collapse
Affiliation(s)
- O Yu Mazurkov
- State Research Center of Virology and Biotechnology "Vector", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia.
| | - L N Shishkina
- State Research Center of Virology and Biotechnology "Vector", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - N I Bormotov
- State Research Center of Virology and Biotechnology "Vector", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - M O Skarnovich
- State Research Center of Virology and Biotechnology "Vector", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - O A Serova
- State Research Center of Virology and Biotechnology "Vector", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - N A Mazurkova
- State Research Center of Virology and Biotechnology "Vector", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A A Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Ya Tikhonov
- N. N. Vo-rozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - B A Selivanov
- N. N. Vo-rozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Mazurkov OY, Kabanov AS, Shishkina LN, Sergeev AA, Skarnovich MO, Bormotov NI, Skarnovich MA, Ovchinnikova AS, Titova KA, Galahova DO, Bulychev LE, Sergeev AA, Taranov OS, Selivanov BA, Tikhonov AY, Zavjalov EL, Agafonov AP, Sergeev AN. New effective chemically synthesized anti-smallpox compound NIOCH-14. J Gen Virol 2016; 97:1229-1239. [PMID: 26861777 DOI: 10.1099/jgv.0.000422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antiviral activity of the new chemically synthesized compound NIOCH-14 (a derivative of tricyclodicarboxylic acid) in comparison with ST-246 (the condensed derivative of pyrroledione) was observed in experiments in vitro and in vivo using orthopoxviruses including highly pathogenic ones. After oral administration of NIOCH-14 to outbred ICR mice infected intranasally with 100 % lethal dose of ectromelia virus, it was shown that 50 % effective doses of NIOCH-14 and ST-246 did not significantly differ. The 'therapeutic window' varied from 1 day before infection to 6 days post-infection (p.i.) to achieve 100-60 % survival rate. The administration of NIOCH-14 and ST-246 to mice resulted in a significant reduction of ectromelia virus titres in organs examined as compared with the control and also reduced pathological changes in the lungs 6 days p.i. Oral administration of NIOCH-14 and ST-246 to ICR mice and marmots challenged with monkeypox virus as compared with the control resulted in a significant reduction of virus production in the lungs and the proportion of infected mice 7 days p.i. as well as the absence of disease in marmots. Significantly lower proportions of infected mice and virus production levels in the lungs as compared with the control were demonstrated in experiments after oral administration of NIOCH-14 and ST-246 to ICR mice and immunodeficient SCID mice challenged with variola virus 3 and 4 days p.i., respectively. The results obtained suggest good prospects for further study of the chemical compound NIOCH-14 to create a new smallpox drug on its basis.
Collapse
Affiliation(s)
- Oleg Yu Mazurkov
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Alexey S Kabanov
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Alexander A Sergeev
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Maksim O Skarnovich
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Nikolay I Bormotov
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Maria A Skarnovich
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Alena S Ovchinnikova
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Ksenya A Titova
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Darya O Galahova
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Leonid E Bulychev
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Artemiy A Sergeev
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Oleg S Taranov
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Boris A Selivanov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry (NIOCH),Novosibirsk,Russian Federation
| | - Alexey Ya Tikhonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry (NIOCH),Novosibirsk,Russian Federation
| | | | - Alexander P Agafonov
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| | - Alexander N Sergeev
- State Research Center of Virology and Biotechnology Vector (SRC VB Vector),Koltsovo, Novosibirsk region,Russian Federation
| |
Collapse
|