1
|
Huang B, Li S, Dai S, Lu X, Wang P, Li X, Zhao Z, Wang Q, Li N, Wen J, Liu Y, Wang X, Man Z, Li W, Liu B. Ti 3C 2T x MXene-Decorated 3D-Printed Ceramic Scaffolds for Enhancing Osteogenesis by Spatiotemporally Orchestrating Inflammatory and Bone Repair Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400229. [PMID: 38973266 PMCID: PMC11425883 DOI: 10.1002/advs.202400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/10/2024] [Indexed: 07/09/2024]
Abstract
Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional β-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of β-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.
Collapse
Affiliation(s)
- Benzhao Huang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Xiao Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ningbo Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| | - Jie Wen
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| | - Yifang Liu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| | - Xin Wang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, P. R. China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Bing Liu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| |
Collapse
|
2
|
Han Y, Cai Y, Lai X, Wang Z, Wei S, Tan K, Xu M, Xie H. lncRNA RMRP Prevents Mitochondrial Dysfunction and Cardiomyocyte Apoptosis via the miR-1-5p/hsp70 Axis in LPS-Induced Sepsis Mice. Inflammation 2021; 43:605-618. [PMID: 31900829 DOI: 10.1007/s10753-019-01141-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Both long non-coding RNA (lncRNA) RMRP and heat shock protein (HSP) 70 have been known to play crucial roles in inflammation. The present study investigated the roles of lncRNA RMRP and HSP70 protein 4 (HSPA4) in lipopolysaccharide (LPS)-induced sepsis. The C57BL/6 mice were treated with LPS, following which the cardiomyocytes were isolated for in vitro experiments. Further, a cardiac muscle cell line, HL-1 was transfected with plasmids expressing RMRP and HSPA4, si-NC, si-HSPA4, miR-1-5p mimic, and controls in vitro. Cell apoptosis, mitochondrial membrane potential (MMP), and levels of intracellular reactive oxygen species (ROS), mRNAs, and proteins were detected in the transfected mice tissues and cells. The LPS treatment significantly reduced the expression levels of RMRP, MMP, and mitochondrial cytochrome C. Moreover, it enhanced the cardiomyocyte apoptosis, intracellular ROS levels, cytoplasm cytochrome C levels, and the expression of caspase-3 and caspase-9 and nuclear factor κB (NF-κB) p65 subunit. The predicted RMRP-miR-1-5p-HSPA4 network was validated by co-transfection experiments in vitro in HL-1 cells. The transfection of miR-1-5p-treated cells with pcDNA-RMRP enhanced the levels of the protein HSPA4; however, no change at the mRNA level was observed. Moreover, miR-1-5p mimic attenuated the protective effect of pcDNA-HSPA4 against LPS-induced mitochondrial damage and apoptosis. In addition, we observed that silencing of HSPA4 increased the expression of nuclear p65; however, this effect could be reversed by co-transfection with pcDNA-RMRP. The lncRNA RMRP axis acts as a sponge for miR-1-5p. RMRP inhibits LPS-induced apoptosis of cardiomyocytes and mitochondrial damage by suppressing the post-transcriptional regulatory function of miR-1-5p on HSPA4. We believe that RMRP exhibits therapeutic potential for LPS-induced myocardial dysfunction both in vitro and in vivo.
Collapse
Affiliation(s)
- Ying Han
- Department of Hospital Infection Control, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yixin Cai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Xiaoquan Lai
- Department of Hospital Infection Control, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenling Wang
- Department of Hospital Infection Control, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiqing Wei
- Department of Hospital Infection Control, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kun Tan
- Department of Hospital Infection Control, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Xu
- Department of Hospital Infection Control, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hongyan Xie
- Department of Hospital Infection Control, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| |
Collapse
|
3
|
Payne M, Bossmann SH, Basel MT. Direct treatment versus indirect: Thermo-ablative and mild hyperthermia effects. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1638. [PMID: 32352660 DOI: 10.1002/wnan.1638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 11/11/2022]
Abstract
Hyperthermia is a rapidly growing field in cancer therapy and many advances have been made in understanding and applying the mechanisms of hyperthermia. Secondary effects of hyperthermia have been increasingly recognized as important in therapeutic effects and multiple studies have started to elucidate their implications for treatment. Immune effects have especially been recognized as important in the efficacy of hyperthermia treatment of cancer. Both thermo-ablative and mild hyperthermia activate the immune system, but mild hyperthermia seems to be more effective at doing so. This may suggest that mild hyperthermia has some advantages over thermo-ablative hyperthermia and research into immune effects of mild hyperthermia should continue. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, Kansas, USA
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, Manhattan, Kansas, USA
| | - Matthew T Basel
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
4
|
Lee S, Son B, Park G, Kim H, Kang H, Jeon J, Youn H, Youn B. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy. Int J Mol Sci 2018; 19:E2795. [PMID: 30227629 PMCID: PMC6164993 DOI: 10.3390/ijms19092795] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Hyperthermia is a cancer treatment where tumor tissue is heated to around 40 °C. Hyperthermia shows both cancer cell cytotoxicity and immune response stimulation via immune cell activation. Immunogenic responses encompass the innate and adaptive immune systems, involving the activation of macrophages, natural killer cells, dendritic cells, and T cells. Moreover, hyperthermia is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In this review, we will focus on hyperthermia-induced immunogenic effects and molecular events to improve radiotherapy efficacy. The beneficial potential of integrating radiotherapy with hyperthermia is also discussed.
Collapse
Affiliation(s)
- Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Gaeul Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
5
|
Ferat-Osorio E, Sánchez-Anaya A, Gutiérrez-Mendoza M, Boscó-Gárate I, Wong-Baeza I, Pastelin-Palacios R, Pedraza-Alva G, Bonifaz LC, Cortés-Reynosa P, Pérez-Salazar E, Arriaga-Pizano L, López-Macías C, Rosenstein Y, Isibasi A. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. JOURNAL OF INFLAMMATION-LONDON 2014; 11:19. [PMID: 25053922 PMCID: PMC4105516 DOI: 10.1186/1476-9255-11-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/05/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Heat shock protein 70 (Hsp70) is an intracellular chaperone protein with regulatory and cytoprotective functions. Hsp70 can also be found in the extracellular milieu, as a result of active secretion or passive release from damaged cells. The role of extracellular Hsp70 is not fully understood. Some studies report that it activates monocytes, macrophages and dendritic cells through innate immune receptors (such as Toll-like receptors, TLRs), while others report that Hsp70 is a negative regulator of the inflammatory response. In order to address this apparent inconsistency, in this study we evaluated the response of human monocytes to a highly purified recombinant Hsp70. METHODS Human peripheral blood monocytes were stimulated with Hsp70, alone or in combination with TLR agonists. Cytokines were quantified in culture supernatants, their mRNAs were measured by RT-PCR, and the binding of transcription factors was evaluated by electrophoretic mobility shift assay (EMSA). Kruskal-Wallis test or one-way or two-way ANOVA were used to analyze the data. RESULTS The addition of Hsp70 to TLR-activated monocytes down-regulated TNF-α as well as IL-6 levels. This effect was independent of a physical interaction between Hsp70 and TLR agonists; instead it resulted of changes at the TNF-α gene expression level. The decrease in TNF-α expression correlated with the binding of HSF-1 (heat shock transcription factor 1, a transcription factor activated in response to Hsp70) and CHBF (constitutive HSE-binding factor) to the TNF-α gene promoter. CONCLUSION Extracellular Hsp70 negatively regulates the production of pro-inflammatory cytokines of monocytes exposed to TLR agonists and contributes to dampen the inflammatory response.
Collapse
Affiliation(s)
- Eduardo Ferat-Osorio
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México ; Servicio de Cirugía Gastrointestinal, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Aldair Sánchez-Anaya
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Mireille Gutiérrez-Mendoza
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Ilka Boscó-Gárate
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Isabel Wong-Baeza
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México ; Departamento de Inmunología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, México D.F., México
| | | | - Gustavo Pedraza-Alva
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Pedro Cortés-Reynosa
- Departamento de Biología Celular, (CINVESTAV) Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México D.F., México
| | - Eduardo Pérez-Salazar
- Departamento de Biología Celular, (CINVESTAV) Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México D.F., México
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México ; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca Mor. 62210, México
| | - Armando Isibasi
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México ; Coordinación de Investigación en Salud, Piso 4 Bloque B Unidad de Congresos Centro Médico Nacional Siglo XXI, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| |
Collapse
|