1
|
la Fleur P, Baizhaxynova A, Reynen E, Kaunelis D, Galiyeva D. Actovegin in the management of patients after ischemic stroke: A systematic review. PLoS One 2022; 17:e0270497. [PMID: 35771887 PMCID: PMC9246213 DOI: 10.1371/journal.pone.0270497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Actovegin is a hemodialysate of calf's blood and has been used for several decades in the countries of Central Asia, East Asia, Russia and some European countries. It has been used to treat patients with various neurological conditions, vascular disorders, and ischemic stroke. OBJECTIVES To perform a systematic review to evaluate the effect of Actovegin in patients who have suffered an ischemic stroke. METHODS A search of MEDLINE, PubMed, Cochrane and Embase was carried out from inception to October 10, 2021 for clinical trials and observational studies with a control group, published in English or Russian. RESULTS Of 220 identified unique records, 84 full-text articles were screened, and 5 studies were selected that met the inclusion criteria. This included 4 observational studies with control groups and one randomized, placebo-controlled clinical trial. These studies enrolled a total of 3879 patients of which 720 patients received Actovegin administered intravenously and/or orally for a duration ranging from 10 to 180 days. Because of study heterogeneity, meta-analysis was not performed. No consistent evidence on improved survival, quality of life, neurologic symptoms, activities of daily living or disability was identified. One study showed statistically significant improvements in the Alzheimer's Disease Assessment Scale, cognitive subscale, extended version (ADAS-cog+) for Actovegin compared with placebo at 6 months but the clinical relevance of this change is uncertain. One study reported a higher incidence of recurrent ischemic stroke, transient ischemic attack or intracerebral hemorrhage in patients taking Actovegin compared to placebo. CONCLUSIONS The benefits of Actovegin are uncertain and that there is potential risk of harm in patients with stroke. More evidence is needed from rigorously designed clinical trials to justify the role of Actovegin in patients with ischemic stroke.
Collapse
Affiliation(s)
- Philip la Fleur
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Emily Reynen
- Department of Critical Care Medicine Queen’s University, Kingston, Ontario, Canada
| | - David Kaunelis
- Canadian Agency for Drugs and Technologies in Health, Ottawa, Canada
| | - Dinara Galiyeva
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
2
|
Li W, Guo A, Sun M, Wang J, Wang Q. Neuroprotective Effects of Deproteinized Calf Serum in Ischemic Stroke. Front Neurol 2021; 12:636494. [PMID: 34557139 PMCID: PMC8453072 DOI: 10.3389/fneur.2021.636494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Deproteinized calf serum (DCS) may have neuroprotective effects after ischemic stroke. The aim of this study is to investigate whether and how the DCS inhibits neuronal injury following cerebral ischemia. Rats were subjected to 2 h transient middle cerebral artery occlusion (MCAO). One dose of 0.125 mg/gbw DCS was given immediately after reperfusion. Neurological deficit and infarct volume at 24 h post-MCAO in DCS-treated rats were lower than those in vehicle-treated rats (p < 0.0005). In cultured neurons model, cell viability was decreased, and apoptosis was increased by oxygen-glucose deprivation/reperfusion (OGD/R) (p < 0.0005). These effects of OGD/R were attenuated by 0.4 μg/μl DCS (p < 0.05) that were validated by CCK8 cell viability assay, phycoerythrin–Annexin V Apoptosis Detection assay, and TUNEL assay. Furthermore, the increase of intracellular ROS level in cultured neurons was suppressed by DCS (p < 0.05). Compared with cells subjected to OGD/R, the expression level of Bax protein decreased, and bcl-2 protein increased after DSC treatment (p < 0.05). Overall, the neuroprotective effects of DCS following cerebral ischemia may in part be due to decreased ROS production and inhibition of apoptosis.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Anchen Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Beijing, China
| | - Jiachuan Wang
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neuropharmacology, Beijing Neurosurgical Institute, Beijing, China
| |
Collapse
|
3
|
Abstract
BACKGROUND Actovegin is a biological drug with a controversial history of use in the treatment of sports injuries during the past 60 years. Particular concerns have been raised about its ergogenic potential to enhance performance, but some of these have been based on little more than anecdote. OBJECTIVES In this article, we review the most recent scientific evidence to determine the clinical efficacy, safety profile, and legal status of Actovegin. METHODS We considered all studies directly commenting on experience with Actovegin use as the primary intervention within the past 10 years. Outcomes included mechanisms of action, clinical efficacy in enhancing muscle repair, any report of safety issues, and any evidence for ergogenic effect. RESULTS Our database search returned 212 articles, abstracts were screened, and after inclusion/exclusion criteria were applied, 25 articles were considered: Publications included 11 primary research articles (7 in vitro studies and 4 clinical trials), 8 review articles, 5 editorials, and a single case report. CONCLUSIONS Current literature is still yet to define the active compound(s) of Actovegin, but suggests that it shows antioxidant and antiapoptotic properties, and may also upregulate macrophage responses central to muscle repair. Clinical efficacy was supported by one new original research article, and the use of Actovegin to treat muscle injuries remains safe and supported. Two articles argued the ergogenic effect of Actovegin, but in vitro findings did not to translate to the outcomes of a clinical trial. An adequate and meaningful scientific approach remains difficult in a field where there is immense pressure to deliver cutting-edge therapies.
Collapse
|
4
|
Mechanical stretch aggravates aortic dissection by regulating MAPK pathway and the expression of MMP-9 and inflammation factors. Biomed Pharmacother 2018; 108:1294-1302. [PMID: 30372831 DOI: 10.1016/j.biopha.2018.09.129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
This study aimed to explore whether mechanical stretch aggravated aortic dissection through regulating MAPK pathway, MMP-9, and inflammation factors. We first established aortic dissection model rats. Mechanical stretch (3 g) was exerted on vascular ring of aortic dissection which was also treated by inhibitors of MAPK pathway (SB203580, SP600125, and U0126). HE and Masson staining showed that aortic dissection severity with 3 g tension was worse than that without tension (0 g); after the treatments of diverse inhibitors, the fracture and breakage of the elastic fibers decreased. The expression of MMP-9, TNF-α, IL-1β) p38/p-p38, JNK1/p-JNK1, and ERK1/2/p-ERK1/2 were determined by immunohistochemical analysis, RT-PCR, and western blot. No matter whether tension was exerted or inhibitors were added, there was no change in the expression of p38, JNK1, and ERK1/2. However, compared to the 0 g group, the expression of MMP-9, TNF-α, IL-1β, p-p38, p-JNK1, and p-ERK1/2 was significantly upregulated in the 3 g group (P < 0.05). In both 0 g and 3 g groups, the expression of MMP-9, TNF-α, IL-1β, p-p38, p-JNK1, and p-ERK1/2 was remarkably downregulated after inhibitors treatment (P < 0.05). In conclusion, mechanical stretch aggravated aortic dissection by regulating the MAPK pathway and the consequent expression of MMP-9 and inflammation factors.
Collapse
|
5
|
Safarova TP, Yakovleva OB, Sheshenin VS, Gavrilova SI. Methods of augmentation of antidepressant therapy (on the model of complex therapy with the inclusion of actovegin) in gerontopsychiatric hospital. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:55-63. [DOI: 10.17116/jnevro201811806255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Yurinskaya MM, Kochetkova OY, Shabarchina LI, Antonova OY, Suslikov AV, Evgen'ev MB, Vinokurov MG. Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes. Cell Stress Chaperones 2017; 22:163-171. [PMID: 27783274 PMCID: PMC5225061 DOI: 10.1007/s12192-016-0743-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
Human heat shock protein Hsp70 was experimentally inserted into polyelectrolyte microcapsules. Encapsulated recombinant Hsp70 was studied in terms of its effects on neutrophil apoptosis, the production of reactive oxygen species, and the secretion of tumor necrosis factor alpha by promonocytic THP-1 cells. It was found that encapsulated Hsp70 effectively inhibits neutrophil apoptosis, unlike free exogenous protein used in solution. In THP-1 cells, encapsulated and free Hsp70 reduced LPS-induced tumor necrosis factor alpha production with a similar efficiency. Encapsulated Hsp70 reduces LPS-induced reactive oxygen species production by neutrophils in the course of its release from the microcapsules but not as much as free Hsp70. Thus, the polyelectrolyte microcapsules can be used as containers for the effective delivery of Hsp70 to neutrophils and monocytes to significantly improve the functioning of the innate immune system.
Collapse
Affiliation(s)
- M M Yurinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, Russian Federation, 119991
- Institute of Cell Biophysics, Russian Academy of Science, Institutskaya Str. 3, Pushchino, Moscow Region, Russian Federation, 142290
| | - O Yu Kochetkova
- Institute of Cell Biophysics, Russian Academy of Science, Institutskaya Str. 3, Pushchino, Moscow Region, Russian Federation, 142290
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino, Moscow Region, Russian Federation, 142290
| | - L I Shabarchina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino, Moscow Region, Russian Federation, 142290
| | - O Yu Antonova
- Institute of Cell Biophysics, Russian Academy of Science, Institutskaya Str. 3, Pushchino, Moscow Region, Russian Federation, 142290
| | - A V Suslikov
- Hospital of the Pushchino Research Center, Institutskaya Str. 1, Pushchino, Moscow Region, Russian Federation, 142290
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, Russian Federation, 119991.
- Institute of Cell Biophysics, Russian Academy of Science, Institutskaya Str. 3, Pushchino, Moscow Region, Russian Federation, 142290.
| | - M G Vinokurov
- Institute of Cell Biophysics, Russian Academy of Science, Institutskaya Str. 3, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|