Nabil M, Mahmoud KR, Nomier R, El-Maghraby EM, Motaweh H. Nano-Porous-Silicon Powder as an Environmental Friend.
MATERIALS 2021;
14:ma14154252. [PMID:
34361446 PMCID:
PMC8347106 DOI:
10.3390/ma14154252]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022]
Abstract
Nano-porous silicon (NPS) powder synthesis is performed by means of a combination of the ultra-sonication technique and the alkali chemical etching process, starting with a commercial silicon powder. Various characterization techniques {X-ray powder diffraction, transmission electron microscopy, Fourier Transform Infrared spectrum, and positron annihilation lifetime spectroscopy} are used for the description of the product’s properties. The NPS product is a new environmentally friendly material used as an adsorbent agent for the acidic azo-dye, Congo red dye. The structural and free volume changes in NPS powder are probed using positron annihilation lifetime (PALS) and positron annihilation Doppler broadening (PADB) techniques. In addition, the mean free volume (VF), as well as fractional free volume (Fv), are also studied via the PALS results. Additionally, the PADB provides a clear relationship between the core and valence electrons changes, and, in addition, the number of defect types present in the synthesized samples. The most effective parameter that affects the dye removal process is the contact time value; the best time for dye removal is 5 min. Additionally, the best value of the CR adsorption capacity by NPS powder is 2665.3 mg/g at 100 mg/L as the initial CR concentration, with an adsorption time of 30 min, without no impact from temperature and pH. So, 5 min is the enough time for the elimination of 82.12% of the 30 mg/L initial concentration of CR. This study expresses the new discovery of a cheap and safe material, in addition to being environmentally friendly, without resorting to any chemical additives or heat treatments.
Collapse