1
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
2
|
García-Cambrón JB, Cerriteño-Sánchez JL, Lara-Romero R, Quintanar-Guerrero D, Blancas-Flores G, Sánchez-Gaytán BL, Herrera-Camacho I, Cuevas-Romero JS. Development of Glycyrrhizinic Acid-Based Lipid Nanoparticle (LNP-GA) as An Adjuvant That Improves the Immune Response to Porcine Epidemic Diarrhea Virus Spike Recombinant Protein. Viruses 2024; 16:431. [PMID: 38543796 PMCID: PMC10974312 DOI: 10.3390/v16030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 05/23/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has affected the pork industry worldwide and during outbreaks the mortality of piglets has reached 100%. Lipid nanocarriers are commonly used in the development of immunostimulatory particles due to their biocompatibility and slow-release delivery properties. In this study, we developed a lipid nanoparticle (LNP) complex based on glycyrrhizinic acid (GA) and tested its efficacy as an adjuvant in mice immunized with the recombinant N-terminal domain (NTD) of porcine epidemic diarrhea virus (PEDV) spike (S) protein (rNTD-S). The dispersion stability analysis (Z-potential -27.6 mV) confirmed the size and charge stability of the LNP-GA, demonstrating that the particles were homogeneously dispersed and strongly anionic, which favors nanoparticles binding with the rNTD-S protein, which showed a slightly positive charge (2.11 mV) by in silico analysis. TEM image of LNP-GA revealed nanostructures with a spherical-bilayer lipid vesicle (~100 nm). The immunogenicity of the LNP-GA-rNTD-S complex induced an efficient humoral response 14 days after the first immunization (p < 0.05) as well as an influence on the cellular immune response by decreasing serum TNF-α and IL-1β concentrations, which was associated with an anti-inflammatory effect.
Collapse
Affiliation(s)
- José Bryan García-Cambrón
- Programa de Doctorado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09089, Mexico;
| | - José Luis Cerriteño-Sánchez
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Rocío Lara-Romero
- Programa de Estancia Posdoctoral, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - David Quintanar-Guerrero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México 54740, Mexico;
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09089, Mexico;
| | - Brenda L. Sánchez-Gaytán
- Centro de Química ICUAP, Laboratorio de Bioinorgánica Aplicada, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Irma Herrera-Camacho
- Centro de Química ICUAP, Laboratorio de Bioquímica y Biología Molecular, Edificio IC7, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Julieta Sandra Cuevas-Romero
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Cuajimalpa, Ciudad de México 05110, Mexico
| |
Collapse
|
3
|
Fischer P, Lutz-Bueno V. Glycyrrhizic acid aggregates seen from a synthetic surfactant perspective. Phys Chem Chem Phys 2024; 26:2806-2814. [PMID: 38196347 PMCID: PMC10806618 DOI: 10.1039/d3cp04835g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Bio- or plant-based surfactants are a sustainable and renewable alternative to replace synthetic chemicals for environmental, drugs and food applications. However, these "green" surfactants have unique molecular structures, and their self-assembly in water might lead to complex morphologies and unexpected properties. The micellization of saponin molecules, such as glycyrrhizic acid (GA), differs significantly from those of conventional synthetic surfactants, yet these differences are often overlooked. Saponins self-assemble in complex hierarchical helical morphologies similar to bile salts, rather than the expected globular, ellipsoidal and wormlike micelles. Here, we review two potential routes for molecular self-assembly of GA, namely kinetics of crystallization and thermodynamic equilibrium, focusing on their structure as a function of concentration. Some uncertainty remains to define which route is followed by GA self-assembly, as well as the first type of aggregate formed at low concentrations, thus we review the state-of-the-art information about GA assembly. We compare the self-assembly of GA with conventional linear surfactants, and identify their key similarities and differences, from molecular and chemical perspectives, based on the critical packing parameter (CPP) theory. We expect that this work will provide perspectives for the unclear process of GA assembly, and highlight its differences from conventional micellization.
Collapse
Affiliation(s)
- Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Viviane Lutz-Bueno
- Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institut PSI, 5232 Villigen, Switzerland.
| |
Collapse
|
4
|
Yang B, Zhang Z, Song J, Qi T, Zeng J, Feng L, Jia X. Interpreting the efficacy enhancement mechanism of Chinese medicine processing from a biopharmaceutic perspective. Chin Med 2024; 19:14. [PMID: 38238801 PMCID: PMC10797928 DOI: 10.1186/s13020-024-00887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Chinese medicine processing (CMP) is a unique pharmaceutical technology that distinguishes it from natural medicines. Current research primarily focuses on changes in chemical components to understand the mechanisms behind efficacy enhancement in processing. However, this paper presents a novel perspective on the biopharmaceutics of CMP. It provides a comprehensive overview of the current research, emphasizing two crucial aspects: the role of 'heat' during processing and the utilization of processing adjuvants. The paper highlights the generation of easily absorbed components through the hydrolysis of glycosides by 'heat', as well as the facilitation of dissolution, absorption, and targeted distribution of active components through the utilization of processing adjuvants. From a biopharmaceutic perspective, this paper provides a lucid comprehension of the scientific foundation for augmenting the efficacy of CMP. Moreover, it proposes a three-dimensional research framework encompassing chemical reactions, phase transitions, and biopharmaceutical properties to further investigate the mechanisms involved in enhancing the efficacy of CMP.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhubin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jinjing Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tianhao Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
5
|
The effect of ethanol on fibrillar hydrogels formed by glycyrrhizic acid monoammonium salt. J Colloid Interface Sci 2023; 630:762-775. [DOI: 10.1016/j.jcis.2022.10.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
|
6
|
Arasu NP, Vázquez H. Development of Classical Force Fields for Interfaces between Single Molecules and Au. J Phys Chem A 2022; 126:5031-5039. [PMID: 35880700 DOI: 10.1021/acs.jpca.2c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interfaces between metals and organic materials play an essential role in molecular surface science, photovoltaics, or molecular electronics. Modeling the evolution of interface geometry over sufficiently long timescales requires an accurate parameterization of the relevant metal-molecule interactions. Here, we describe a method for calculating interface parameters from reference density functional theory calculations of small metal-molecule complexes. We apply this method to develop a parameter set for a series of metal-molecule-metal junctions. We study the dynamics of short oligophenyls with amine, methyl-sulfide, or direct Au-C links, which are bonded to Au(111) via small adatom structures. Nanosecond classical molecular dynamics simulations using the generated parameter set reveal insight into molecular degrees of freedom not accessible from ab initio molecular dynamics simulations.
Collapse
Affiliation(s)
- Narendra P Arasu
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic.,Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic
| | - Héctor Vázquez
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| |
Collapse
|
7
|
Glycyrrhizin-induced changes in phospholipid dynamics studied by 1H NMR and MD simulation. Arch Biochem Biophys 2020; 686:108368. [PMID: 32315654 DOI: 10.1016/j.abb.2020.108368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 11/20/2022]
Abstract
Phospholipid bilayer constitutes the basis of the cell membrane. Any changes in its structure and dynamics could significantly affect the properties and functions of the cell membrane and associated proteins. It could, in its turn, affect the mechanism and strength of drug-membrane interaction. Phase transitions in lipid bilayer play an important role in cell life and in transmembrane transport of ions and drug molecules. In the present study we have tried to clarify the mechanism of glycyrrhizin bioactivity by the study of its influence on the lipid dynamics and phase transition of the lipid bilayer. For this purpose, a combination of nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulations was used. Glycyrrhizin is the saponin extracted from licorice root. It displays a wide spectrum of biological activity and is frequently used in traditional medicine since ancient times. Now glycyrrhizin attracts additional attention as a novel multifunctional drug delivery system. We have established that glycyrrhizin interaction with dipalmitoylphosphatidylcholine lipid bilayers leads to changes in lipid mobility and phase transition temperature. NMR and MD results demonstrated that a glycyrrhizin molecule is able to integrate into a lipid bilayer and form stable aggregates inside. We hypothesize that surface curvatures caused by local changes in the lipid composition and the presence of phase boundaries might affect the permeability of the cell membrane.
Collapse
|
8
|
Hussain M. Molecular Dynamics Simulations of Glycyrrhizic Acid Aggregates as Drug-Carriers for Paclitaxel. Curr Drug Deliv 2020; 16:618-627. [PMID: 30868954 DOI: 10.2174/1567201816666190313155117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/12/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glycyrrhizic acid (GA) is a glycoside that has shown considerable promise as a penetration enhancer and drug carrier to improve the absorption of poorly water-soluble drugs. The aggregation behavior of GA and its ability to form large micelles at higher solution concentrations are thought to contribute to these bioavailability enhancing properties. The oral absorption of Paclitaxel (PTX) for example, an anti-cancer agent which exhibits poor oral bioavailability, has been found to significantly increase in the presence of GA. METHODS In an attempt to visualize the aggregation behavior of GA and its subsequent association with PTX, 100 ns molecular dynamics simulation of a 5 mM aqueous solution of GA with 10 molecules of PTX was conducted using GROMACS and an all-atom forcefield. RESULTS Aggregation of GA molecules was found to occur quickly at this level of saturation leading to two stable aggregates of 13 and 17 GA molecules with an effective radius of 10.17 nm to 10.92 nm. These aggregates form not in isolation, but together with PTX molecule embedded within the structures, which reduces the number of interactions and hydrogen-bonding with water. CONCLUSION GA aggregation occurs around PTX molecules in solution, forming co-joined GA-PTX cluster units at a ratio of 3:1. These clusters remain stable for the remainder of the 100ns simulation and serve to isolate and protect PTX from the aqueous environment.
Collapse
Affiliation(s)
- Mumtaz Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Technologi MARA, Bandar Puncak Alam, 42300 Selangor, Malaysia
| |
Collapse
|
9
|
Kim AV, Shelepova EA, Selyutina OY, Meteleva ES, Dushkin AV, Medvedev NN, Polyakov NE, Lyakhov NZ. Glycyrrhizin-Assisted Transport of Praziquantel Anthelmintic Drug through the Lipid Membrane: An Experiment and MD Simulation. Mol Pharm 2019; 16:3188-3198. [PMID: 31198045 DOI: 10.1021/acs.molpharmaceut.9b00390] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Praziquantel (PZQ) is one of the most widespread anthelmintic drugs. However, the frequent insufficient application of PZQ after oral administration is associated with its low solubility, penetration rate, and bioavailability. In the present study, the permeation of PZQ through a 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) membrane was investigated to probe glycyrrhizin-assisted transport. Glycyrrhizin (or glycyrrhizic acid, GA), a natural saponin, shows the ability to enhance the therapeutic activity of various drugs when it is used as a drug delivery system. However, the molecular mechanism of this effect is still under debate. In the present study, the transport rate was measured experimentally by a parallel artificial membrane permeation assay (PAMPA) and molecular dynamics (MD) simulation with DOPC lipid bilayers. The formation of the noncovalent supramolecular complex of PZQ with disodium salt of GA (Na2GA) in an aqueous solution was proved by the NMR relaxation technique. PAMPA experiments show a strong increase in the amount of the penetrating praziquantel molecules in comparison with a saturated aqueous solution of pure drug used as a control. MD simulation of PZQ penetration through the bilayer demonstrates an increase in permeability into the membrane in the presence of a glycyrrhizin molecule. A decrease in the free energy barrier in the middle of the lipid bilayer was obtained, associated with the hydrogen bond between PZQ and GA. Also, GA reduces the local bilayer surface resistance to penetration of PZQ by rearranging the surface lipid headgroups. This study clarifies the mechanism of increasing the drug's bioavailability in the presence of glycyrrhizin.
Collapse
Affiliation(s)
- Alexandra V Kim
- Institute of Chemical Kinetics and Combustion , Institutskaya Street, 3 , 630090 , Novosibirsk , Russia.,Novosibirsk State University , 630090 Novosibirsk , Russia
| | - Ekaterina A Shelepova
- Institute of Chemical Kinetics and Combustion , Institutskaya Street, 3 , 630090 , Novosibirsk , Russia.,Novosibirsk State University , 630090 Novosibirsk , Russia
| | - Olga Yu Selyutina
- Institute of Chemical Kinetics and Combustion , Institutskaya Street, 3 , 630090 , Novosibirsk , Russia
| | - Elizaveta S Meteleva
- Institute of Solid State Chemistry and Mechanochemistry , 630128 Novosibirsk , Russia
| | - Alexander V Dushkin
- Institute of Solid State Chemistry and Mechanochemistry , 630128 Novosibirsk , Russia
| | - Nikolai N Medvedev
- Institute of Chemical Kinetics and Combustion , Institutskaya Street, 3 , 630090 , Novosibirsk , Russia.,Novosibirsk State University , 630090 Novosibirsk , Russia
| | - Nikolay E Polyakov
- Institute of Chemical Kinetics and Combustion , Institutskaya Street, 3 , 630090 , Novosibirsk , Russia.,Institute of Solid State Chemistry and Mechanochemistry , 630128 Novosibirsk , Russia
| | - Nikolay Z Lyakhov
- Institute of Solid State Chemistry and Mechanochemistry , 630128 Novosibirsk , Russia
| |
Collapse
|
10
|
Glycyrrhizic acid as a multifunctional drug carrier - From physicochemical properties to biomedical applications: A modern insight on the ancient drug. Int J Pharm 2019; 559:271-279. [PMID: 30690130 PMCID: PMC7126914 DOI: 10.1016/j.ijpharm.2019.01.047] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Glycyrrhizic acid (GA), saponin of licorice shows wide range of biological activity. Mechanism of GA activity on the cell and molecular level is rarely discussed. GA activity could be caused by the cell membrane modification.
Glycyrrhizic acid is the main active component of Licorice root which has been known in traditional Chinese and Japanese medicine since ancient times. In these cultures glycyrrhizic acid (GA) is one of the most frequently used drugs. However, only in 21-st century a novel unusual property of the GA to enhance the activity of other drugs has been discovered. The review describes briefly the experimental evidences of wide spectrum of own biological activities of glycyrrhizic acid as well as discusses the possible mechanisms of the ability of GA to enhance the activity of other drugs. We have shown that due to its amphiphilic nature GA is able to form self-associates in aqueous and non-aqueous media, as well as water soluble complexes with a wide range of lipophilic drugs. The main purpose of our review is to focus reader's attention on physicochemical studies of the molecular mechanisms of GA activity as a drug delivery system (DDS). In our opinion, the most intriguing feature of glycyrrhizic acid which might be the key factor in its therapeutic activity is the ability of GA to incorporate into the lipid bilayer and to increase the membrane fluidity and permeability. The ability of biomolecules and their aggregates to change the properties of cell membranes is of great significance, from both fundamental and practical points of view.
Collapse
|
11
|
Shelepova EA, Kim AV, Voloshin VP, Medvedev NN. Intermolecular Voids in Lipid Bilayers in the Presence of Glycyrrhizic Acid. J Phys Chem B 2018; 122:9938-9946. [PMID: 30299964 DOI: 10.1021/acs.jpcb.8b07989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that glycyrrhizic acid (GA) promotes the enhancement of the activity of several medicines. This is attributed to the fact that GA increases the membrane permeability of small drug molecules. There is an opinion that GA facilitates the formation of additional large voids in the membrane, which enhance the passive diffusion of molecules across the membrane. In this work, we investigate how GA influences the intermolecular voids using the molecular dynamics simulation. We calculate the interstitial spheres (empty spheres inscribed between molecules) in model DPPC and DOPC bilayers, both pure and with the addition of cholesterol. It was observed that the addition of GA does not lead to the formation of new large interstitial spheres; i.e., new large voids do not appear. The distribution of empty volume inside the bilayers is also studied. We calculated the profiles of the empty volume fraction both from the middle plane of the bilayer and from its outer surface (from the lipid-water interface). This analysis has shown that the addition of GA does not cause the increase of the empty volume in the bilayer; moreover, there is a slight decrease in the bilayers with cholesterol. Thus, we have not found a confirmation of the simplest hypothesis that individual GA molecules induce pores in the membrane.
Collapse
Affiliation(s)
- Ekaterina A Shelepova
- Novosibirsk State University , Novosibirsk 63090 , Russia.,Voevodsky Institute of Chemical Kinetics and Combustion , Novosibirsk 63090 , Russia
| | - Alexandra V Kim
- Novosibirsk State University , Novosibirsk 63090 , Russia.,Voevodsky Institute of Chemical Kinetics and Combustion , Novosibirsk 63090 , Russia
| | - Vladimir P Voloshin
- Voevodsky Institute of Chemical Kinetics and Combustion , Novosibirsk 63090 , Russia
| | - Nikolai N Medvedev
- Novosibirsk State University , Novosibirsk 63090 , Russia.,Voevodsky Institute of Chemical Kinetics and Combustion , Novosibirsk 63090 , Russia
| |
Collapse
|
12
|
Su X, Wu L, Hu M, Dong W, Xu M, Zhang P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed Pharmacother 2017; 95:670-678. [PMID: 28886526 DOI: 10.1016/j.biopha.2017.08.123] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/11/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Drug delivery systems have become an integral part of anticancer drugs today. Design of novel drug carriers may lead to significant enhancement in antineoplastic therapy. Glycyrrhizic acid (GL), which is the most important active ingredient extracted from the licorice root shows great potential as a carrier material in this field. Recent studies have indicated that the combination of GL and first-line drugs had better therapeutic effects on cancers. GL showed a series of anti-cancer-related pharmacological activities, such as broad-spectrum anti-cancer ability, resistance to the tissue toxicity caused by chemotherapy and radiation, drug absorption enhancing effects and anti-multidrug resistance (MDR) mechanisms, as a carrier material in drug delivery systems. This review introduced the current research progress on pharmacological mechanisms of GL and development of GL-based drug carriers in anti-cancer field to provide basis for the application prospects of GL. The design of novel GL-based drug delivery systems will bring new opportunities and challenges to anti-cancer therapy.
Collapse
Affiliation(s)
- Xitong Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingming Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxiang Dong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
13
|
Mass Spectrometric Analysis of Supramolecular Complexes of Glycyrrhizic Acid and Simvastatin. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-1975-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Anikeenko AV, Zelikman MV, Kadtsyn ED, Medvedev NN. Simulation of glycyrrhizic acid associates with cholesterol in methanol. J STRUCT CHEM+ 2017. [DOI: 10.1134/s002247661702007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Petrova SS, Schlotgauer AA, Kruppa AI, Leshina TV. Self-Association of Glycyrrhizic Acid. NMR Study. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0845] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The use of various NMR techniques allows to demonstrate the aggregation processes of β-glycyrrhizic acid (GA) in water/methanol (4:1, v:v) mixture with solution pH≤5. The micelle formation was monitored by measuring T2 relaxation and diffusion of GA. The model of gelation from micelles was suggested. It was shown that NMR chemical shifts of the protons of GA glucuronic moiety are sensitive to solution pH and not sensitive to GA concentration changes. At the same time the protons of triterpene moiety are sensitive to the nearest environment during the GA aggregation, and micelles are formed by hydrophobic interaction between the triterpene moieties of GA.
Collapse
Affiliation(s)
- Svetlana S. Petrova
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Institutskaya str. 3, Russian Federation
| | - Anna A. Schlotgauer
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Institutskaya str. 3, Russian Federation
| | - Alexander I. Kruppa
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Institutskaya str. 3, Russian Federation
| | - Tatyana V. Leshina
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Institutskaya str. 3, Russian Federation
| |
Collapse
|
16
|
Zelikman MV, Kim AV, Medvedev NN. Structure of small associates of glycyrrhizic acid with cholesterol in aqueous solution: Molecular dynamics simulation. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476616050139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Selyutina OY, Apanasenko IE, Kim AV, Shelepova EA, Khalikov SS, Polyakov NE. Spectroscopic and molecular dynamics characterization of glycyrrhizin membrane-modifying activity. Colloids Surf B Biointerfaces 2016; 147:459-466. [PMID: 27580071 DOI: 10.1016/j.colsurfb.2016.08.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022]
Abstract
Glycyrrhizic acid (GA) is a triterpene glycoside extracted from licorice root. Due to its amphiphilicity GA is capable of forming complexes with a variety of hydrophobic molecules, substantially increasing their solubility. GA can enhance the therapeutic effects of various drugs. It was hypothesized that the increased bioavailability of the drug by GA is not only due to increased solubility, but also to enhancement of drug permeability through cell membranes. In this study the interaction of GA with POPC liposomes and model DOPC, POPC and DPPC bilayers was investigated by NMR with addition of shift reagents and MD simulations. This work helps to better understand the mechanism of enhanced drug bioavailability in the presence of GA. NMR and MD reveal that GA does penetrate into the lipid bilayer. NMR shows that GA changes the mobility of lipids. GA is predominantly located in the outer "half-layer" of the liposome and that the middle of the hydrophobic tails is the preferred location. GA freely passes through the bilayer surface to the inner part bringing a few water molecules. Also both approaches indicate pore formation in the presence of GA. The GA interaction with membranes is an additional aspect of the biological activity of GA-based drug delivery systems.
Collapse
Affiliation(s)
- O Yu Selyutina
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova St., 2, 630090, Novosibirsk, Russia.
| | - I E Apanasenko
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova St., 2, 630090, Novosibirsk, Russia
| | - A V Kim
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090, Novosibirsk, Russia
| | - E A Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova St., 2, 630090, Novosibirsk, Russia
| | - S S Khalikov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, 119334, Moscow, Russia
| | - N E Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090, Novosibirsk, Russia
| |
Collapse
|
18
|
|