1
|
Shi Q, Yu T, de Vries J, Peterson BW, Ren Y, Wu R, Liu J, Busscher HJ, van der Mei HC. Nano-architectonics of Pt single-atoms and differently-sized nanoparticles supported by manganese-oxide nanosheets and impact on catalytic and anti-biofilm activities. J Colloid Interface Sci 2024; 672:224-235. [PMID: 38838630 DOI: 10.1016/j.jcis.2024.05.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Hybrid-nanozymes are promising in various applications, but comprehensive comparison of hybrid-nanozymes composed of single-atoms or nanoparticles on the same support has never been made. Here, manganese-oxide nanosheets were loaded with Pt-single-atoms or differently-sized nanoparticles and their oxidase- and-peroxidase activities compared. High-resolution Transmission-Electron-Microscopy and corresponding Fast Fourier Transform imaging showed that Pt-nanoparticles (1.5 nm diameter) had no clear (111) crystal-planes, while larger nanoparticles had clear (111) crystal-planes. X-ray Photo-electron Spectroscopy demonstrated that unloaded nanosheets were composed of MnO2 with a high number of oxygen vacancies (Vo/Mn 0.4). Loading with 7.0 nm Pt-nanoparticles induced a change to Mn2O3, while loading with 1.5 nm nanoparticles increased the number of vacancies (Vo/Mn 1.2). Nanosheets loaded with 3.0 nm Pt-nanoparticles possessed similarly high catalytic activities as Pt-single-atoms. However, loading with 1.5 nm or 7.0 nm Pt-nanoparticles yielded lower catalytic activities. A model is proposed explaining the low catalytic activity of under- and over-sized Pt-nanoparticles as compared with intermediately-sized (3.0 nm) Pt-nanoparticles and single-atoms. Herewith, catalytic activities of hybrid-nanozymes composed of single-atoms and intermediately-sized nanoparticles are put a par, as confirmed here with respect to bacterial biofilm eradication. This conclusion facilitates a balanced choice between using Pt-single-atoms or nanoparticles in further development and application of hybrid-nanozymes.
Collapse
Affiliation(s)
- Qiaolan Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Tianrong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Joop de Vries
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Renfei Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, PR China.
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Shutilov AA, Zenkovets GA. Synergetic Effect of an Iron Oxide Additive to the Composition of a Support for a Pt/TiO2 Catalyst in the Carbon Monoxide Oxidation Reaction. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158421050104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|