1
|
Tupikova EN, Platonov IA, Bondareva OS, Khabarova DS. Catalytic Activity of the Autoclave Thermolysis Products of [Co(NH3)5Cl][PtCl4] in the Complete Oxidation of Propane and Their Morphology and Phase Composition. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158421060161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study. Catalysts 2021. [DOI: 10.3390/catal11121446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this study, 3%Pd/Al2O3, 3%Pt/Al2O3 and bimetallic (1%Pd + 2%Pt)/Al2O3 catalysts were examined in the total oxidation of methane in a temperature range of 150–400 °C. The evolution of the active component under the reaction conditions was studied by transmission electron microscopy and in situ extended X-ray absorption fine structure (EXAFS) spectroscopy. It was found that the platinum and bimetallic palladium-platinum catalysts are more stable against sintering than the palladium catalysts. For all the catalysts, the active component forms a “core-shell” structure in which the metallic core is covered by an oxide shell. The “core-shell” structure for the platinum and bimetallic palladium-platinum catalysts is stable in the temperature range of 150–400 °C. However, in the case of the palladium catalysts the metallic core undergoes the reversible oxidation at temperatures above 300 °C and reduced to the metallic state with the decrease in the reaction temperature. The scheme of the active component evolution during the oxidation of methane is proposed and discussed.
Collapse
|