1
|
Ortiz M, Bosch J, Coclet C, Johnson J, Lebre P, Salawu-Rotimi A, Vikram S, Makhalanyane T, Cowan D. Microbial Nitrogen Cycling in Antarctic Soils. Microorganisms 2020; 8:E1442. [PMID: 32967081 PMCID: PMC7564152 DOI: 10.3390/microorganisms8091442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
The Antarctic continent is widely considered to be one of the most hostile biological habitats on Earth. Despite extreme environmental conditions, the ice-free areas of the continent, which constitute some 0.44% of the total continental land area, harbour substantial and diverse communities of macro-organisms and especially microorganisms, particularly in the more "hospitable" maritime regions. In the more extreme non-maritime regions, exemplified by the McMurdo Dry Valleys of South Victoria Land, nutrient cycling and ecosystem servicing processes in soils are largely driven by microbial communities. Nitrogen turnover is a cornerstone of ecosystem servicing. In Antarctic continental soils, specifically those lacking macrophytes, cold-active free-living diazotrophic microorganisms, particularly Cyanobacteria, are keystone taxa. The diazotrophs are complemented by heterotrophic bacterial and archaeal taxa which show the genetic capacity to perform elements of the entire N cycle, including nitrification processes such as the anammox reaction. Here, we review the current literature on nitrogen cycling genes, taxa, processes and rates from studies of Antarctic soils. In particular, we highlight the current gaps in our knowledge of the scale and contribution of these processes in south polar soils as critical data to underpin viable predictions of how such processes may alter under the impacts of future climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa; (M.O.); (J.B.); (C.C.); (J.J.); (P.L.); (A.S.-R.); (S.V.); (T.M.)
| |
Collapse
|
2
|
Vishnivetskaya TA, Buongiorno J, Bird J, Krivushin K, Spirina EV, Oshurkova V, Shcherbakova VA, Wilson G, Lloyd KG, Rivkina EM. Methanogens in the Antarctic Dry Valley permafrost. FEMS Microbiol Ecol 2018; 94:5033399. [DOI: 10.1093/femsec/fiy109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/01/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tatiana A Vishnivetskaya
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
- University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Jordan Bird
- University of Tennessee, Knoxville, TN, 37996, USA
| | - Kirill Krivushin
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Elena V Spirina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Victoria Oshurkova
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Victoria A Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Gary Wilson
- University of Otago, Dunedin, 9054, New Zealand
| | | | - Elizaveta M Rivkina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
| |
Collapse
|
3
|
Mickol RL, Laird SK, Kral TA. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars. Microorganisms 2018; 6:microorganisms6020034. [PMID: 29690617 PMCID: PMC6027200 DOI: 10.3390/microorganisms6020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/25/2023] Open
Abstract
Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii, were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.
Collapse
Affiliation(s)
- Rebecca L Mickol
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
- American Society for Engineering Education, Washington, DC 20036, USA.
| | - Sarah K Laird
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Timothy A Kral
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
4
|
Makhalanyane TP, Van Goethem MW, Cowan DA. Microbial diversity and functional capacity in polar soils. Curr Opin Biotechnol 2016; 38:159-66. [PMID: 26921734 DOI: 10.1016/j.copbio.2016.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 11/18/2022]
Abstract
Global change is disproportionately affecting cold environments (polar and high elevation regions), with potentially negative impacts on microbial diversity and functional processes. In most cold environments the combination of low temperatures, and physical stressors, such as katabatic wind episodes and limited water availability result in biotic systems, which are in trophic terms very simple and primarily driven by microbial communities. Metagenomic approaches have provided key insights on microbial communities in these systems and how they may adapt to stressors and contribute towards mediating crucial biogeochemical cycles. Here we review, the current knowledge regarding edaphic-based microbial diversity and functional processes in Antarctica, and the Artic. Such insights are crucial and help to establish a baseline for understanding the impact of climate change on Polar Regions.
Collapse
Affiliation(s)
- Thulani Peter Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria 0028, South Africa
| | - Marc Warwick Van Goethem
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria 0028, South Africa
| | - Don Arthur Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria 0028, South Africa.
| |
Collapse
|
5
|
Manucharova NA, Trosheva EV, Kol’tsova EM, Demkina EV, Karaevskaya EV, Rivkina EM, Mardanov AV, El’-Registan GI. Characterization of the structure of the prokaryotic complex of Antarctic permafrost by molecular genetic techniques. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716010057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, Hartmann M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol 2016; 92:fiw018. [DOI: 10.1093/femsec/fiw018] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 01/08/2023] Open
|
7
|
Shcherbakova V, Oshurkova V, Yoshimura Y. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars. Microorganisms 2015; 3:518-34. [PMID: 27682103 PMCID: PMC5023257 DOI: 10.3390/microorganisms3030518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 09/01/2015] [Indexed: 11/16/2022] Open
Abstract
The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.
Collapse
Affiliation(s)
- Viktoria Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow, 142290, Russia.
- Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science (ISAS), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan.
| | - Viktoria Oshurkova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow, 142290, Russia.
| | - Yoshitaka Yoshimura
- Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science (ISAS), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan.
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawagakuen, Machida, Tokyo, 194-8610, Japan.
| |
Collapse
|