1
|
Semyachkina-Glushkovskaya O, Sokolovski S, Fedosov I, Shirokov A, Navolokin N, Bucharskaya A, Blokhina I, Terskov A, Dubrovski A, Telnova V, Tzven A, Tzoy M, Evsukova A, Zhlatogosrkaya D, Adushkina V, Dmitrenko A, Manzhaeva M, Krupnova V, Noghero A, Bragin D, Bragina O, Borisova E, Kurths J, Rafailov E. Transcranial Photosensitizer-Free Laser Treatment of Glioblastoma in Rat Brain. Int J Mol Sci 2023; 24:13696. [PMID: 37762000 PMCID: PMC10530910 DOI: 10.3390/ijms241813696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode. This wavelength, highly absorbed by oxygen, is capable of turning triplet oxygen to singlet form. Applying 1267 nm laser irradiation for a 4 week course with a total dose of 12.7 kJ/cm2 firmly suppresses GBM growth and increases survival rate from 34% to 64%, presumably via LT-activated apoptosis, inhibition of the proliferation of tumor cells, a reduction in intracranial pressure and stimulation of the lymphatic drainage and clearing functions. PS-free-LT is a promising breakthrough technology in non- or minimally invasive therapy for superficial GBMs in infants as well as in adult patients with high photosensitivity or an allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Sergey Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| | - Ivan Fedosov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Alla Bucharskaya
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dubrovski
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Anna Tzven
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Daria Zhlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ekaterina Borisova
- Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd. 72, 1784 Sofia, Bulgaria;
| | - Jürgen Kurths
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University Moscow, 119991 Moscow, Russia
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
2
|
Turkovskaya OV, Golubev SN. The Collection of Rhizosphere Microorganisms: its importance for the study of associative plant-bacterium interactions. Vavilovskii Zhurnal Genet Selektsii 2020; 24:315-324. [PMID: 33659814 PMCID: PMC7716537 DOI: 10.18699/vj20.623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microbial culture collections are very important components of biological science. They provide researchers with material for studies and preserve biological resources. One such collection is the Collection of Rhizosphere Microorganisms, kept at the Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov (IBPPM). Its activity is primarily directed toward the isolation and preservation of microorganisms from the plant root zone. The international research interest in microorganisms from this ecological niche is not waning, because they are very important for plant growth and development and, consequently, for plant breeding. The group of bacteria with properties of significance for plants has been given the name "plant-growth-promoting rhizobacteria" (PGPR). This group includes nitrogen-fixing soil alpha-proteobacteria of the genus Azospirillum, which form the core of the IBPPM collection. First discovered by Brazilian scientists in the 1970s, azospirilla are now a universally recognized model object for studying the molecular mechanisms underlying plant-bacterium interactions. The broad range of useful properties found in these microorganisms, including the fixation of atmospheric nitrogen, production of phytohormones, solubilization of phosphates, control of pathogens, and formation of induced systemic resistance in the colonized plants, make these bacteria an all-purpose tool that has been used for several decades in basic and applied research. This article reviews the current state of Azospirillum research, with emphasis on the results obtained at the IBPPM. Scientific expeditions across the Saratov region undertaken by IBPPM microbiologists in the early 1980s formed the basis for the unique collection of members of this bacterial taxon. Currently, the collection has more than 160 Azospirillum strains and is one of the largest collections in Europe. The research conducted at the IBPPM is centered mostly on the Azospirillum structures involved in associative symbiosis with plants, primarily extracellular polysaccharide-containing complexes and lectins. The development of immunochemical methods contributed much to our understanding of the overall organization of the surface of rhizosphere bacteria. The extensive studies of the Azospirillum genome largely deepened our understanding of the role of the aforesaid bacterial structures, motility, and biofilms in the colonization of host plant roots. Of interest are also applied studies focusing on agricultural and environmental technologies and on the "green" synthesis of Au, Ag, and Se nanoparticles. The Collection of Rhizosphere Microorganisms continues to grow, being continually supplemented with newly isolated strains. The data presented in this article show the great importance of specialized microbial culture repositories, such as the IBPPM collection, for the development and maintenance of the microbial research base and for the effective solution of basic and applied tasks in microbiology.
Collapse
Affiliation(s)
- O V Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov, Russia
| | - S N Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|