1
|
Wang D, He M, Zhang M, Yang H, Huang J, Zhou R, Jin Y, Wu C. Food yeasts: occurrence, functions, and stress tolerance in the brewing of fermented foods. Crit Rev Food Sci Nutr 2023; 63:12136-12149. [PMID: 35875880 DOI: 10.1080/10408398.2022.2098688] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the rapid development of systems biology technology, there is a deeper understanding of the molecular biological mechanisms and physiological characteristics of microorganisms. Yeasts are widely used in the food industry with their excellent fermentation performances. While due to the complex environments of food production, yeasts have to suffer from various stress factors. Thus, elucidating the stress mechanisms of food yeasts and proposing potential strategies to improve tolerance have been widely concerned. This review summarized the recent signs of progress in the variety, functions, and stress tolerance of food yeasts. Firstly, the main food yeasts occurred in fermented foods, and the taxonomy levels are demonstrated. Then, the main functions of yeasts including aroma enhancer, safety performance enhancer, and fermentation period reducer are discussed. Finally, the stress response mechanisms of yeasts and the strategies to improve the stress tolerance of cells are reviewed. Based on sorting out these related recent researches systematically, we hope that this review can provide help and approaches to further exert the functions of food yeasts and improve food production efficiency.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Muwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Gallego-García M, Moreno AD, González A, Negro MJ. Efficient use of discarded vegetal residues as cost-effective feedstocks for microbial oil production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:21. [PMID: 36759921 PMCID: PMC9912647 DOI: 10.1186/s13068-023-02268-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Horticultural intensive type systems dedicated in producing greenhouse vegetables are one of the primary industries generating organic waste. Towards the implementation of a zero-waste strategy, this work aims to use discarded vegetables (tomato, pepper and watermelon) as feedstock for producing microbial oil using the oleaginous yeast Cryptococcus curvatus. RESULTS The soluble fraction, resulting after crushing and centrifuging these residues, showed C/N ratios of about 15, with a total carbohydrate content (mainly glucose, fructose and sucrose) ranging from 30 g/L to 65 g/L. Using these liquid fractions as substrate under a pulse-feeding strategy with a concentrated glucose solution resulted in an intracellular total lipid accumulation of about 30% (w/w) of the total dry cell weight (DCW). To increase this intracellular lipid content, the initial C/N content was increased from 15 to 30 and 50. Under these conditions, the process performance of the pulse-feeding strategy increased by 20-36%, resulting in a total intracellular lipid concentration of 35-40% DCW (w/w). CONCLUSION These results demonstrate the potential of discarded vegetables as a substrate for producing bio-based products such as microbial oil when proper cultivation strategies are available.
Collapse
Affiliation(s)
- María Gallego-García
- grid.420019.e0000 0001 1959 5823Advanced Biofuels and Bioproducts Unit, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain ,grid.7159.a0000 0004 1937 0239Universidad de Alcalá, Alcalá de Henares, 28805 Madrid Spain
| | - Antonio D. Moreno
- grid.420019.e0000 0001 1959 5823Advanced Biofuels and Bioproducts Unit, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - Alberto González
- grid.420019.e0000 0001 1959 5823Advanced Biofuels and Bioproducts Unit, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Engineering thermotolerant Yarrowia lipolytica for sustainable biosynthesis of mannitol and fructooligosaccharides. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
5
|
Hackenschmidt S, Bracharz F, Daniel R, Thürmer A, Bruder S, Kabisch J. Effects of a high-cultivation temperature on the physiology of three different Yarrowia lipolytica strains. FEMS Yeast Res 2020; 19:5586564. [PMID: 31605534 DOI: 10.1093/femsyr/foz068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the increasing relevance, ranging from academic research to industrial applications, only a limited number of non-conventional, oleaginous Yarrowia lipolytica strains are characterized in detail. Therefore, we analyzed three strains in regard to their metabolic and physiological properties, especially with respect to important characteristics of a production strain. By investigating different cultivation conditions and media compositions, similarities and differences between the distinct strain backgrounds could be derived. Especially sugar alcohol production, as well as an agglomeration of cells were found to be connected with growth at high temperatures. In addition, sugar alcohol production was independent of high substrate concentrations under these conditions. To investigate the genotypic basis of particular traits, including growth characteristics and metabolite concentrations, genomic analysis were performed. We found sequence variations for one third of the annotated proteins but no obvious link to all phenotypic features.
Collapse
Affiliation(s)
- S Hackenschmidt
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - F Bracharz
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - R Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - A Thürmer
- MF 2: Genomsequenzierung, Robert Koch Institute Berlin, Seestrasse 10, 13353 Berlin, Germany
| | - S Bruder
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - J Kabisch
- Computergestützte Synthetische Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| |
Collapse
|
6
|
Wang N, Chi P, Zou Y, Xu Y, Xu S, Bilal M, Fickers P, Cheng H. Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:176. [PMID: 33093870 PMCID: PMC7576711 DOI: 10.1186/s13068-020-01815-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/10/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Functional sugar alcohols have been widely used in the food, medicine, and pharmaceutical industries for their unique properties. Among these, erythritol is a zero calories sweetener produced by the yeast Yarrowia lipolytica. However, in wild-type strains, erythritol is produced with low productivity and yield and only under high osmotic pressure together with other undesired polyols, such as mannitol or d-arabitol. The yeast is also able to catabolize erythritol in non-stressing conditions. RESULTS Herein, Y. lipolytica has been metabolically engineered to increase erythritol production titer, yield, and productivity from glucose. This consisted of the disruption of anabolic pathways for mannitol and d-arabitol together with the erythritol catabolic pathway. Genes ZWF1 and GND encoding, respectively, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also constitutively expressed in regenerating the NADPH2 consumed during erythritol synthesis. Finally, the gene RSP5 gene from Saccharomyces cerevisiae encoding ubiquitin ligase was overexpressed to improve cell thermoresistance. The resulting strain HCY118 is impaired in mannitol or d-arabitol production and erythritol consumption. It can grow well up to 35 °C and retain an efficient erythritol production capacity at 33 °C. The yield, production, and productivity reached 0.63 g/g, 190 g/L, and 1.97 g/L·h in 2-L flasks, and increased to 0.65 g/g, 196 g/L, and 2.51 g/L·h in 30-m3 fermentor, respectively, which has economical practical importance. CONCLUSION The strategy developed herein yielded an engineered Y. lipolytica strain with enhanced thermoresistance and NADPH supply, resulting in a higher ability to produce erythritol, but not mannitol or d-arabitol from glucose. This is of interest for process development since it will reduce the cost of bioreactor cooling and erythritol purification.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Zou
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - M. Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Patrick Fickers
- Microbial Process and Interaction, TERRA Teaching and Research Centre, University of Liege – Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Sekova VY, Dergacheva DI, Isakova EP, Gessler NN, Tereshina VM, Deryabina YI. Soluble Sugar and Lipid Readjustments in the Yarrowia lipolytica Yeast at Various Temperatures and pH. Metabolites 2019; 9:metabo9120307. [PMID: 31861165 PMCID: PMC6950712 DOI: 10.3390/metabo9120307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Microorganisms cope with a wide range of environmental challenges using different mechanisms. Their ability to prosper at extreme ambient pH and high temperatures has been well reported, but the adaptation mechanism often remains unrevealed. In this study, we addressed the dynamics of lipid and sugar profiles upon different cultivation conditions. The results showed that the cells grown at various pH and optimal temperature contained mannitol as the major cytosol sugar alcohol. The elevated temperature of 38 °C led to a two- to three-fold increase in total cytosol sugars with concurrent substitution of mannitol for trehalose. Lipid composition in the cells at optimal temperature changed insignificantly at any pH tested. The increase in the temperature caused some drop in the storage and membrane lipid levels, remarkable changes in their composition, and the degree of unsaturated fatty acids. It was shown that the fatty acid composition of some membrane phospholipids varied considerably at changing pH and temperature values. The data showed a pivotal role and flexibility of the sugar and lipid composition of Y. lipolytica W29 in adaptation to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Varvara Yu Sekova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
- Correspondence: (V.Y.S.); (E.P.I.)
| | - Daria I. Dergacheva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
- Correspondence: (V.Y.S.); (E.P.I.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia;
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| |
Collapse
|
8
|
Stress tolerance phenotype of industrial yeast: industrial cases, cellular changes, and improvement strategies. Appl Microbiol Biotechnol 2019; 103:6449-6462. [DOI: 10.1007/s00253-019-09993-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|