1
|
Quéméneur M, Mei N, Monnin C, Postec A, Guasco S, Jeanpert J, Maurizot P, Pelletier B, Erauso G. Microbial taxa related to natural hydrogen and methane emissions in serpentinite-hosted hyperalkaline springs of New Caledonia. Front Microbiol 2023; 14:1196516. [PMID: 37485525 PMCID: PMC10359428 DOI: 10.3389/fmicb.2023.1196516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The southeastern part of New Caledonia main island (Grande Terre) is the location of a large ophiolitic formation that hosts several hyperalkaline springs discharging high pH (∼11) and warm (<40°C) fluids enriched in methane (CH4) and hydrogen (H2). These waters are produced by the serpentinization of the ultrabasic rock formations. Molecular surveys had previously revealed the prokaryotic diversity of some of these New Caledonian springs, especially from the submarine chimneys of Prony Bay hydrothermal field. Here we investigate the microbial community of hyperalkaline waters from on-land springs and their relationships with elevated concentrations of dissolved H2 (21.1-721.3 μmol/L) and CH4 (153.0-376.6 μmol/L). 16S rRNA gene analyses (metabarcoding and qPCR) provided evidence of abundant and diverse prokaryotic communities inhabiting hyperalkaline fluids at all the collected springs. The abundance of prokaryotes was positively correlated to the H2/CH4 ratio. Prokaryotes consisted mainly of bacteria that use H2 as an energy source, such as microaerophilic Hydrogenophaga/Serpentinimonas (detected in all sources on land) or anaerobic sulfate-reducing Desulfonatronum, which were exclusively found in the most reducing (Eh ref H2 ∼ -700 mV) and the most H2-enriched waters discharging at the intertidal spring of the Bain des Japonais. The relative abundance of a specific group of uncultured Methanosarcinales that thrive in serpentinization-driven ecosystems emitting H2, considered potential H2-consuming methanogens, was positively correlated with CH4 concentrations, and negatively correlated to the relative abundance of methylotrophic Gammaproteobacteria. Firmicutes were also numerous in hyperalkaline waters, and their relative abundance (e.g., Gracilibacter or Dethiobacter) was proportional to the dissolved H2 concentrations, but their role in the H2 budget remains to be assessed. The prokaryotic communities thriving in New Caledonia hyperalkaline waters are similar to those found in other serpentinite-hosted high-pH waters worldwide, such as Lost City (North Atlantic) and The Cedars (California).
Collapse
Affiliation(s)
- Marianne Quéméneur
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nan Mei
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
| | - Christophe Monnin
- Géosciences Environnement Toulouse, UMR 5563 (CNRS/UPS/IRD/CNES), Toulouse, France
| | - Anne Postec
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Sophie Guasco
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Julie Jeanpert
- Direction de l’Industrie, des Mines et de l’Energie, Nouméa, New Caledonia
| | - Pierre Maurizot
- Direction de l’Industrie, des Mines et de l’Energie, Nouméa, New Caledonia
| | | | - Gaël Erauso
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
2
|
Coskun ÖK, Gomez-Saez GV, Beren M, Ozcan D, Hosgormez H, Einsiedl F, Orsi WD. Carbon metabolism and biogeography of candidate phylum " Candidatus Bipolaricaulota" in geothermal environments of Biga Peninsula, Turkey. Front Microbiol 2023; 14:1063139. [PMID: 36910224 PMCID: PMC9992828 DOI: 10.3389/fmicb.2023.1063139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Terrestrial hydrothermal springs and aquifers are excellent sites to study microbial biogeography because of their high physicochemical heterogeneity across relatively limited geographic regions. In this study, we performed 16S rRNA gene sequencing and metagenomic analyses of the microbial diversity of 11 different geothermal aquifers and springs across the tectonically active Biga Peninsula (Turkey). Across geothermal settings ranging in temperature from 43 to 79°C, one of the most highly represented groups in both 16S rRNA gene and metagenomic datasets was affiliated with the uncultivated phylum "Candidatus Bipolaricaulota" (former "Ca. Acetothermia" and OP1 division). The highest relative abundance of "Ca. Bipolaricaulota" was observed in a 68°C geothermal brine sediment, where it dominated the microbial community, representing 91% of all detectable 16S rRNA genes. Correlation analysis of "Ca. Bipolaricaulota" operational taxonomic units (OTUs) with physicochemical parameters indicated that salinity was the strongest environmental factor measured associated with the distribution of this novel group in geothermal fluids. Correspondingly, analysis of 23 metagenome-assembled genomes (MAGs) revealed two distinct groups of "Ca. Bipolaricaulota" MAGs based on the differences in carbon metabolism: one group encoding the bacterial Wood-Ljungdahl pathway (WLP) for H2 dependent CO2 fixation is selected for at lower salinities, and a second heterotrophic clade that lacks the WLP that was selected for under hypersaline conditions in the geothermal brine sediment. In conclusion, our results highlight that the biogeography of "Ca. Bipolaricaulota" taxa is strongly correlated with salinity in hydrothermal ecosystems, which coincides with key differences in carbon acquisition strategies. The exceptionally high relative abundance of apparently heterotrophic representatives of this novel candidate Phylum in geothermal brine sediment observed here may help to guide future enrichment experiments to obtain representatives in pure culture.
Collapse
Affiliation(s)
- Ömer K Coskun
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gonzalo V Gomez-Saez
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Murat Beren
- Department of Geological Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Dogacan Ozcan
- Department of Geological Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Hakan Hosgormez
- Department of Geological Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Florian Einsiedl
- Chair of Hydrogeology, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Oren A, Garrity GM. Candidatus List No. 2. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2021; 71. [PMID: 33881984 DOI: 10.1099/ijsem.0.004671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
4
|
Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res 2020; 30:315-333. [PMID: 32188701 PMCID: PMC7111523 DOI: 10.1101/gr.258640.119] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genomes are an integral component of the biological information about an organism; thus, the more complete the genome, the more informative it is. Historically, bacterial and archaeal genomes were reconstructed from pure (monoclonal) cultures, and the first reported sequences were manually curated to completion. However, the bottleneck imposed by the requirement for isolates precluded genomic insights for the vast majority of microbial life. Shotgun sequencing of microbial communities, referred to initially as community genomics and subsequently as genome-resolved metagenomics, can circumvent this limitation by obtaining metagenome-assembled genomes (MAGs); but gaps, local assembly errors, chimeras, and contamination by fragments from other genomes limit the value of these genomes. Here, we discuss genome curation to improve and, in some cases, achieve complete (circularized, no gaps) MAGs (CMAGs). To date, few CMAGs have been generated, although notably some are from very complex systems such as soil and sediment. Through analysis of about 7000 published complete bacterial isolate genomes, we verify the value of cumulative GC skew in combination with other metrics to establish bacterial genome sequence accuracy. The analysis of cumulative GC skew identified potential misassemblies in some reference genomes of isolated bacteria and the repeat sequences that likely gave rise to them. We discuss methods that could be implemented in bioinformatic approaches for curation to ensure that metabolic and evolutionary analyses can be based on very high-quality genomes.
Collapse
Affiliation(s)
- Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA
| | - Karthik Anantharaman
- Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA
| | - Alon Shaiber
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, USA.,Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| |
Collapse
|