1
|
Ardo FM, Khoo KS, Ahmad Sobri MZ, Suparmaniam U, Ethiraj B, Anwar AF, Lam SM, Sin JC, Shahid MK, Ansar S, Ramli A, Lim JW. Modelling photoperiod in enhancing hydrogen production from Chlorella vulgaris sp. while bioremediating ammonium and organic pollutants in municipal wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123648. [PMID: 38408504 DOI: 10.1016/j.envpol.2024.123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 μmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.
Collapse
Affiliation(s)
- Fatima Musa Ardo
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Mohamad Zulfadhli Ahmad Sobri
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Uganeeswary Suparmaniam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Aliya Fathima Anwar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sze Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jin Chung Sin
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon 34134, Republic of Korea
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Anita Ramli
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Kossalbayev B, Yilmaz G, Ozcan H, Soykan G, Yalcin S, Allakhverdiev S. Photosynthesis and hydrogen energy for sustainability: harnessing the sun for a greener future. PHOTOSYNTHETICA 2024; 62:138-146. [PMID: 39651409 PMCID: PMC11613830 DOI: 10.32615/ps.2024.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 12/11/2024]
Abstract
At the dawn of the 21st century, the rapid expansion of manufacturing plants and the widespread destruction of natural habitats significantly contributed to accelerating global warming. This phenomenon has led to severe droughts, irreversible agricultural damage, and substantial challenges in securing food supplies for the burgeoning global population. The alarming surge in atmospheric carbon dioxide concentrations underscores the urgent need to embrace clean energy technologies. To date, the primary goal of mankind is to develop innovative approaches to return Earth's ecology to its pre-industrial condition, as a century ago. The special issue (SI) in the International Journal of Hydrogen Energy presents a collection of papers on photosynthetic and biomimetic hydrogen (H2) production, presented at the 'Photosynthesis and Hydrogen Energy Research for Sustainability - 2023' conference, held in Istanbul, Turkey, from 3-9 July 2023 (https://phrs-conference.com). The event was supported by the International Society of Photosynthesis Research (ISPR) and the International Association for Hydrogen Energy (IAHE). SI aims to deliver the latest insights into sustainable energy, with a particular emphasis on Biohydrogen and Artificial Photosynthesis. At the conference, nine promising young investigators were honoured with awards. Included herein are photographs capturing the conference's congenial atmosphere. We cordially invite you to the 12th International Meeting of 'Photosynthesis and Hydrogen Energy Research for Sustainability - 2024', honouring esteemed researchers John Allen (UK), Eva-Mari Aro (Finland), Ibrahim Dincer (Canada), Kazunari Domen (Japan), Elizabeth Gantt (USA), Andrey Rubin (Russia), and scheduled to take place in Turkey (13-19 October 2024).
Collapse
Affiliation(s)
- B.D. Kossalbayev
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7 Avenue, Tianjin Airport Economic Area, 300308 Tianjin, China
| | - G. Yilmaz
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - H.G. Ozcan
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - G. Soykan
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - S. Yalcin
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - S.I. Allakhverdiev
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
3
|
Zhang J, Xue D, Wang C, Fang D, Cao L, Gong C. Genetic engineering for biohydrogen production from microalgae. iScience 2023; 26:107255. [PMID: 37520694 PMCID: PMC10384274 DOI: 10.1016/j.isci.2023.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The development of biohydrogen as an alternative energy source has had great economic and environmental benefits. Hydrogen production from microalgae is considered a clean and sustainable energy production method that can both alleviate fuel shortages and recycle waste. Although algal hydrogen production has low energy consumption and requires only simple pretreatment, it has not been commercialized because of low product yields. To increase microalgal biohydrogen production several technologies have been developed, although they struggle with the oxygen sensitivity of the hydrogenases responsible for hydrogen production and the complexity of the metabolic network. In this review, several genetic and metabolic engineering studies on enhancing microalgal biohydrogen production are discussed, and the economic feasibility and future direction of microalgal biohydrogen commercialization are also proposed.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Dongsheng Xue
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Chongju Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Donglai Fang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Liping Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R.China
| |
Collapse
|
4
|
Lu Q, Xiao Y, Wu P. Emerging technologies of employing algae and microorganisms to promote the return-to-field of crop straws: A mini-review. Front Bioeng Biotechnol 2023; 11:1152778. [PMID: 37064245 PMCID: PMC10097884 DOI: 10.3389/fbioe.2023.1152778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
As an agricultural waste, crop straw enriched with a variety of nutrients is regarded as an important fertilizer resource. In the past, crop straw return-to-field played a key role in the sustainability of agricultural environment, but some problems, such as ammonia loss in ammoniation, low rate of straw decomposition, and high carbon footprint, attracted researchers' attentions. In this paper, we propose three technical routes, including cyanobacteria-based ammonia assimilation, microorganisms-based crop straw pretreatment, and microalgae-based carbon capture, to address the aforementioned problems. Besides, challenges which may hinder the practical application of these technical routes as well as the potential solutions are discussed in detail. It is expected that this paper could provide new ideas to the practical application of crop straw return-to-field.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Qian Lu, ; Yu Xiao,
| | - Yu Xiao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Qian Lu, ; Yu Xiao,
| | - Pengfei Wu
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Mattila H, Havurinne V, Antal T, Tyystjärvi E. Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F 0 rise method. PHOTOSYNTHETICA 2022; 60:529-538. [PMID: 39649393 PMCID: PMC11558589 DOI: 10.32615/ps.2022.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 12/10/2024]
Abstract
We recently developed a chlorophyll a fluorescence method (activated F0 rise) for estimating if a light wavelength preferably excites PSI or PSII in plants. Here, the method was tested in green microalgae: Scenedesmus quadricauda, Scenedesmus ecornis, Scenedesmus fuscus, Chlamydomonas reinhardtii, Chlorella sorokiniana, and Ettlia oleoabundans. The Scenedesmus species displayed a plant-like action spectra of F0 rise, suggesting that PSII/PSI absorption ratio is conserved from higher plants to green algae. F0 rise was weak in a strain of C. reinhardtii, C. sorokiniana, and E. oleoabundans. Interestingly, another C. reinhardtii strain exhibited a strong F0 rise. The result indicates that the same illumination can lead to different redox states of the plastoquinone pool in different algae. Flavodiiron activity enhanced the F0 rise, presumably by oxidizing the plastoquinone pool during pre-illumination. The activity of plastid terminal oxidase, in turn, diminished the F0 rise, but to a small degree.
Collapse
Affiliation(s)
- H. Mattila
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - V. Havurinne
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Present address: ECOMARE, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - T. Antal
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Permanent address: Laboratory of Integrated Ecological Research, Pskov State University, 180000 Pskov, Russia
| | - E. Tyystjärvi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
6
|
The relationship between photosystem II regulation and light-dependent hydrogen production by microalgae. Biophys Rev 2022; 14:893-904. [DOI: 10.1007/s12551-022-00977-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
|
7
|
Cheng CL, Lo YC, Huang KL, Nagarajan D, Chen CY, Lee DJ, Chang JS. Effect of pH on biomass production and carbohydrate accumulation of Chlorella vulgaris JSC-6 under autotrophic, mixotrophic, and photoheterotrophic cultivation. BIORESOURCE TECHNOLOGY 2022; 351:127021. [PMID: 35306130 DOI: 10.1016/j.biortech.2022.127021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Microalgal biomass, known as the third generation feedstock for biofuels production, is currently being explored mainly for lipids and functional components. However, the potential of microalgal carbohydrates has not been evaluated. In this investigation, Chlorella vulgaris JSC-6 was used for carbohydrates production from CO2 and fatty acids under different cultivation strategies to meet the requirements of a CO2-neutral and clean fermentation system for biofuel production. Autotrophic cultivation resulted in better carbon assimilation and carbohydrate accumulation; about 1.4 g CO2 could be converted to 1 g biomass, of which 50% are carbohydrates. Assimilation of fatty acids in photoheterotrophic and mixotrophic modes was influenced by pH, and pH 7-7.5 supported butyrate and acetate assimilation. The maximum carbohydrate content (49.86%) was attained in mixotrophic mode, and the ratio of the simple sugars glucose-xylose-arabinose was 1:0.11:0.02. The higher glucose content makes the microalgal biomass a suitable feedstock for sugar-based fermentations.
Collapse
Affiliation(s)
- Chieh-Lun Cheng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chung Lo
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Lou Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong, PR China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
8
|
King SJ, Jerkovic A, Brown LJ, Petroll K, Willows RD. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii. Microb Biotechnol 2022; 15:1946-1965. [PMID: 35338590 PMCID: PMC9249334 DOI: 10.1111/1751-7915.14024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogen is a clean alternative to fossil fuels. It has applications for electricity generation and transportation and is used for the manufacturing of ammonia and steel. However, today, H2 is almost exclusively produced from coal and natural gas. As such, methods to produce H2 that do not use fossil fuels need to be developed and adopted. The biological manufacturing of H2 may be one promising solution as this process is clean and renewable. Hydrogen is produced biologically via enzymes called hydrogenases. There are three classes of hydrogenases namely [FeFe], [NiFe] and [Fe] hydrogenases. The [FeFe] hydrogenase HydA1 from the model unicellular algae Chlamydomonas reinhardtii has been studied extensively and belongs to the A1 subclass of [FeFe] hydrogenases that have the highest turnover frequencies amongst hydrogenases (21,000 ± 12,000 H2 s−1 for CaHydA from Clostridium acetobutyliticum). Yet to date, limitations in C. reinhardtii H2 production pathways have hampered commercial scale implementation, in part due to O2 sensitivity of hydrogenases and competing metabolic pathways, resulting in low H2 production efficiency. Here, we describe key processes in the biogenesis of HydA1 and H2 production pathways in C. reinhardtii. We also summarize recent advancements of algal H2 production using synthetic biology and describe valuable tools such as high‐throughput screening (HTS) assays to accelerate the process of engineering algae for commercial biological H2 production.
Collapse
Affiliation(s)
- Samuel J King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ante Jerkovic
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert D Willows
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
9
|
Li S, Li F, Zhu X, Liao Q, Chang JS, Ho SH. Biohydrogen production from microalgae for environmental sustainability. CHEMOSPHERE 2022; 291:132717. [PMID: 34757051 DOI: 10.1016/j.chemosphere.2021.132717] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen as a clean energy that is conducive to energy and environmental sustainability, playing a significant role in the alleviation of global climate change and energy crisis. Biohydrogen generation from microalgae has been reported as a highly attractive approach that can produce a benign clean energy carrier to achieve carbon neutrality and bioenergy sustainability. Thus, this review explored the mechanism of biohydrogen production from microalgae containing direct biophotolysis, indirect biophotolysis, photo fermentation, and dark fermentation. In general, dark fermentation of microalgae for biohydrogen production is relatively better than photo fermentation, biophotolysis, and microbial electrolysis, because it is able to consecutively generate hydrogen and is not reliant on energy supplied by natural sunlight. Besides, this review summarized potential algal strains for hydrogen production focusing on green microalgae and cyanobacteria. Moreover, a thorough review process was conducted to present hydrogen-producing enzymes targeting biosynthesis and localization of enzymes in microalgae. Notably, the most powerful hydrogen-producing enzymes are [Fe-Fe]-hydrogenases, which have an activity nearly 10-100 times better than [Ni-Fe]-hydrogenases and 1000 times better than nitrogenases. In addition, this work highlighted the major factors affecting low energy conversion efficiency and oxygen sensitivity of hydrogen-producing enzymes. Noting that the most practical pathway of biohydrogen generation was sulfur-deprivation compared with phosphorus, nitrogen, and magnesium deficiency. Further discussions in this work summarized the recent advancement in biohydrogen production from microalgae such as genetic engineering, microalgae-bacteria consortium, electro-bio-hydrogenation, and nanomaterials for developing enzyme stability and hydrolytic efficiency. More importantly, this review provided a summary of current limitations and future perspectives on the sustainable production of biohydrogen from microalgae.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan, ROC; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan, ROC
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
10
|
Xiong D, Happe T, Hankamer B, Ross IL. Inducible high level expression of a variant ΔD19A,D58A-ferredoxin-hydrogenase fusion increases photohydrogen production efficiency in the green alga Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Li L, Zhang L, Liu J. Proteomic analysis of hydrogen production in Chlorella pyrenoidosa under nitrogen deprivation. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Chen J, Li Q, Wang L, Fan C, Liu H. Advances in Whole‐Cell Photobiological Hydrogen Production. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jie Chen
- School of Chemical Science and Engineering Shanghai Research Institute for Intelligent Autonomous Systems Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Tongji University Shanghai 200092 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Huajie Liu
- School of Chemical Science and Engineering Shanghai Research Institute for Intelligent Autonomous Systems Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Tongji University Shanghai 200092 China
| |
Collapse
|
13
|
Manoyan J, Gabrielyan L, Kalantaryan V, Trchounian A. Growth properties and hydrogen yield in green microalga Parachlorella kessleri: Effects of low-intensity electromagnetic irradiation at the frequencies of 51.8 GHz and 53.0 GHz. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:112016. [PMID: 32920483 DOI: 10.1016/j.jphotobiol.2020.112016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/01/2022]
Abstract
The current research reports the effects of low-intensity extremely high frequency electromagnetic irradiation (EMI) of 51.8 GHz and 53.0 GHz on green microalga Parachlorella kessleri RA-002 isolated in Armenia. EMI demonstrated different effects on the growth properties of microalgae under various conditions. Under aerobic conditions a positive effect of EMI on the growth rate of P. kessleri and the content of photosynthetic pigments were observed. The data obtained indicates a significant role of O2, since the enhancing effect of EMI was determined only under aerobic conditions. Meanwhile under anaerobic conditions EMI with both frequencies caused inhibition of algal growth and a decrease in the amount of photosynthetic pigments. EMI also inhibited the yield of H2 production in P. kessleri, which was partially restored after 5-day cultivation due to the existence of protective mechanisms in this alga. The results might indicate membrane-bound mechanisms of EMI action on algae, which can be associated with the effects on photosynthetic pigments and membrane-associated enzymes responsible for H2 production. The results are useful for the development of algae biotechnology and the possibility of using EMI as a factor which regulates the production of biomass and biohydrogen by green microalgae.
Collapse
Affiliation(s)
- Jemma Manoyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoukian Str, 0025 Yerevan, Armenia
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoukian Str, 0025 Yerevan, Armenia
| | - Vitaly Kalantaryan
- Department of Telecommunication and Signal Processing, Yerevan State University, 1 A. Manoukian Str, 0025 Yerevan, Armenia
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoukian Str, 0025 Yerevan, Armenia.
| |
Collapse
|