1
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
2
|
Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity. Front Microbiol 2023; 14:1211793. [PMID: 37362940 PMCID: PMC10286901 DOI: 10.3389/fmicb.2023.1211793] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Phages and their bacterial hosts together constitute a vast and diverse ecosystem. Facing the infection of phages, prokaryotes have evolved a wide range of antiviral mechanisms, and phages in turn have adopted multiple tactics to circumvent or subvert these mechanisms to survive. An in-depth investigation into the interaction between phages and bacteria not only provides new insight into the ancient coevolutionary conflict between them but also produces precision biotechnological tools based on anti-phage systems. Moreover, a more complete understanding of their interaction is also critical for the phage-based antibacterial measures. Compared to the bacterial antiviral mechanisms, studies into counter-defense strategies adopted by phages have been a little slow, but have also achieved important advances in recent years. In this review, we highlight the numerous intracellular immune systems of bacteria as well as the countermeasures employed by phages, with an emphasis on the bacteriophage strategies in response to host antiviral immunity.
Collapse
Affiliation(s)
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
3
|
Evseev PV, Shneider MM, Mikhailova Y, Shelenkov AA, Yanushevich Y, Karlova MG, Moiseenko AV, Sokolova OS, Shagin DA. Novel Klebsiella pneumoniae virulent bacteriophage KPPK108.1 capable of infecting the K108 serotype strains. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug-resistant Klebsiella pneumoniae strains are one of the major causes of nosocomial infections caused by the antibiotic-resistant bacteria. There are different options for dealing with this threat, among which is the clinical application of bacteriophages. The study was aimed to isolate and describe a virulent bactriophage, having the potential for therapeutic use. The standard phage biology and bioinformatic methods were used, which included the advanced techniques for protein structure prediction (AlphaFold software), and electron microscopy. The virulent podovirus KPPK108.1, being the member of genus Drulisvirus, which is able to specifically infect the K. pneumoniae strains with the KL108 type capsular polysaccharide, has been isolated from the wastewater. The sequence of the bactriophage genome has been defined, the biological properties have been investigated, and the genetic features have been described.
Collapse
Affiliation(s)
- PV Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - MM Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - YuV Mikhailova
- Central Research Institute of Epidemiology of Rospotrebnadzor, Moscow, Russia
| | - AA Shelenkov
- Central Research Institute of Epidemiology of Rospotrebnadzor, Moscow, Russia
| | - YuG Yanushevich
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - MG Karlova
- Lomonosov Moscow State University, Moscow, Russia
| | - AV Moiseenko
- Lomonosov Moscow State University, Moscow, Russia
| | - OS Sokolova
- Lomonosov Moscow State University, Moscow, Russia
| | - DA Shagin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Zaworski J, Dagva O, Kingston AW, Fomenkov A, Morgan RD, Bossi L, Raleigh EA. Genome archaeology of two laboratory Salmonella enterica enterica sv Typhimurium. G3 (BETHESDA, MD.) 2021; 11:jkab226. [PMID: 34544129 PMCID: PMC8496262 DOI: 10.1093/g3journal/jkab226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
The Salmonella research community has used strains and bacteriophages over decades, exchanging useful new isolates among laboratories for the study of cell surface antigens, metabolic pathways and restriction-modification (RM) studies. Here we present the sequences of two laboratory Salmonella strains (STK005, an isolate of LB5000; and its descendant ER3625). In the ancestry of LB5000, segments of ∼15 and ∼42 kb were introduced from Salmonella enterica sv Abony 803 into S. enterica sv Typhimurium LT2, forming strain SD14; this strain is thus a hybrid of S. enterica isolates. Strains in the SD14 lineage were used to define flagellar antigens from the 1950s to the 1970s, and to define three RM systems from the 1960s to the 1980s. LB5000 was also used as a host in phage typing systems used by epidemiologists. In the age of cheaper and easier sequencing, this resource will provide access to the sequence that underlies the extensive literature.
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Oyut Dagva
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | | | - Alexey Fomenkov
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Richard D Morgan
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Lionello Bossi
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), University Paris-Saclay, Gif-sur-Yvette 91198, France
| | | |
Collapse
|
5
|
Nogueira WG, Jaiswal AK, Tiwari S, Ramos RTJ, Ghosh P, Barh D, Azevedo V, Soares SC. Computational identification of putative common genomic drug and vaccine targets in Mycoplasma genitalium. Genomics 2021; 113:2730-2743. [PMID: 34118385 DOI: 10.1016/j.ygeno.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Mycoplasma genitalium is an obligate intracellular bacterium that is responsible for several sexually transmitted infections, including non-gonococcal urethritis in men and several inflammatory reproductive tract syndromes in women. Here, we applied subtractive genomics and reverse vaccinology approaches for in silico prediction of potential vaccine and drug targets against five strains of M. genitalium. We identified 403 genes shared by all five strains, from which 104 non-host homologous proteins were selected, comprising of 44 exposed/secreted/membrane proteins and 60 cytoplasmic proteins. Based on the essentiality, functionality, and structure-based binding affinity, we finally predicted 19 (14 novel) putative vaccine and 7 (2 novel) candidate drug targets. The docking analysis showed six molecules from the ZINC database as promising drug candidates against the identified targets. Altogether, both vaccine candidates and drug targets identified here may contribute to the future development of therapeutic strategies to control the spread of M. genitalium worldwide.
Collapse
Affiliation(s)
- Wylerson G Nogueira
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.; Department of Immunology, Microbiology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil..
| | - Rommel T J Ramos
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond VA-23284, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar C Soares
- Department of Immunology, Microbiology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Pinilla-Redondo R, Shehreen S, Marino ND, Fagerlund RD, Brown CM, Sørensen SJ, Fineran PC, Bondy-Denomy J. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat Commun 2020; 11:5652. [PMID: 33159058 PMCID: PMC7648647 DOI: 10.1038/s41467-020-19415-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Many prokaryotes employ CRISPR-Cas systems to combat invading mobile genetic elements (MGEs). In response, some MGEs have developed strategies to bypass immunity, including anti-CRISPR (Acr) proteins; yet the diversity, distribution and spectrum of activity of this immune evasion strategy remain largely unknown. Here, we report the discovery of new Acrs by assaying candidate genes adjacent to a conserved Acr-associated (Aca) gene, aca5, against a panel of six type I systems: I-F (Pseudomonas, Pectobacterium, and Serratia), I-E (Pseudomonas and Serratia), and I-C (Pseudomonas). We uncover 11 type I-F and/or I-E anti-CRISPR genes encoded on chromosomal and extrachromosomal MGEs within Enterobacteriaceae and Pseudomonas, and an additional Aca (aca9). The acr genes not only associate with other acr genes, but also with genes encoding inhibitors of distinct bacterial defense systems. Thus, our findings highlight the potential exploitation of acr loci neighborhoods for the identification of previously undescribed anti-defense systems.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- University College Copenhagen, Copenhagen, Denmark
| | - Saadlee Shehreen
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicole D Marino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Bio-protection Research Centre, University of Otago, Dunedin, New Zealand.
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA.
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
7
|
Ghassemi F, Madadgar O, Roohvand F, Rasekhian M, Etemadzadeh MH, Boroujeni GRN, Langroudi AG, Azadmanesh K. Translational efficiency of BVDV IRES and EMCV IRES for T7 RNA polymerase driven cytoplasmic expression in mammalian cell lines. Mol Biol 2017. [DOI: 10.1134/s002689331702011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Yüksel D, Bianco PR, Kumar K. De novo design of protein mimics of B-DNA. MOLECULAR BIOSYSTEMS 2016; 12:169-77. [PMID: 26568416 PMCID: PMC4699573 DOI: 10.1039/c5mb00524h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural mimicry of DNA is utilized in nature as a strategy to evade molecular defences mounted by host organisms. One such example is the protein Ocr - the first translation product to be expressed as the bacteriophage T7 infects E. coli. The structure of Ocr reveals an intricate and deliberate arrangement of negative charges that endows it with the ability to mimic ∼24 base pair stretches of B-DNA. This uncanny resemblance to DNA enables Ocr to compete in binding the type I restriction modification (R/M) system, and neutralizes the threat of hydrolytic cleavage of viral genomic material. Here, we report the de novo design and biophysical characterization of DNA mimicking peptides, and describe the inhibitory action of the designed helical bundles on a type I R/M enzyme, EcoR124I. This work validates the use of charge patterning as a design principle for creation of protein mimics of DNA, and serves as a starting point for development of therapeutic peptide inhibitors against human pathogens that employ molecular camouflage as part of their invasion stratagem.
Collapse
Affiliation(s)
- Deniz Yüksel
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA.
| | - Piero R Bianco
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | - Krishna Kumar
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA. and Cancer Center, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
9
|
Roberts GA, Chen K, Bower EKM, Madrzak J, Woods A, Barker AM, Cooper LP, White JH, Blakely GW, Manfield I, Dryden DTF. Mutations of the domain forming the dimeric interface of the ArdA protein affect dimerization and antimodification activity but not antirestriction activity. FEBS J 2013; 280:4903-14. [PMID: 23910724 PMCID: PMC3906837 DOI: 10.1111/febs.12467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Abstract
ArdA antirestriction proteins are encoded by genes present in many conjugative plasmids and transposons within bacterial genomes. Antirestriction is the ability to prevent cleavage of foreign incoming DNA by restriction-modification (RM) systems. Antimodification, the ability to inhibit modification by the RM system, can also be observed with some antirestriction proteins. As these mobile genetic elements can transfer antibiotic resistance genes, the ArdA proteins assist their spread. The consequence of antirestriction is therefore the enhanced dissemination of mobile genetic elements. ArdA proteins cause antirestriction by mimicking the DNA structure bound by Type I RM enzymes. The crystal structure of ArdA showed it to be a dimeric protein with a highly elongated curved cylindrical shape [McMahon SA et al. (2009) Nucleic Acids Res37, 4887–4897]. Each monomer has three domains covered with negatively charged side chains and a very small interface with the other monomer. We investigated the role of the domain forming the dimer interface for ArdA activity via site-directed mutagenesis. The antirestriction activity of ArdA was maintained when up to seven mutations per monomer were made or the interface was disrupted such that the protein could only exist as a monomer. The antimodification activity of ArdA was lost upon mutation of this domain. The ability of the monomeric form of ArdA to function in antirestriction suggests, first, that it can bind independently to the restriction subunit or the modification subunits of the RM enzyme, and second, that the many ArdA homologues with long amino acid extensions, present in sequence databases, may be active in antirestriction.
Collapse
|
10
|
Roberts GA, Stephanou AS, Kanwar N, Dawson A, Cooper LP, Chen K, Nutley M, Cooper A, Blakely GW, Dryden DTF. Exploring the DNA mimicry of the Ocr protein of phage T7. Nucleic Acids Res 2012; 40:8129-43. [PMID: 22684506 PMCID: PMC3439906 DOI: 10.1093/nar/gks516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 11/30/2022] Open
Abstract
DNA mimic proteins have evolved to control DNA-binding proteins by competing with the target DNA for binding to the protein. The Ocr protein of bacteriophage T7 is the most studied DNA mimic and functions to block the DNA-binding groove of Type I DNA restriction/modification enzymes. This binding prevents the enzyme from cleaving invading phage DNA. Each 116 amino acid monomer of the Ocr dimer has an unusual amino acid composition with 34 negatively charged side chains but only 6 positively charged side chains. Extensive mutagenesis of the charges of Ocr revealed a regression of Ocr activity from wild-type activity to partial activity then to variants inactive in antirestriction but deleterious for cell viability and lastly to totally inactive variants with no deleterious effect on cell viability. Throughout the mutagenesis the Ocr mutant proteins retained their folding. Our results show that the extreme bias in charged amino acids is not necessary for antirestriction activity but that less charged variants can affect cell viability by leading to restriction proficient but modification deficient cell phenotypes.
Collapse
Affiliation(s)
- Gareth A. Roberts
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Augoustinos S. Stephanou
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Nisha Kanwar
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Angela Dawson
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Laurie P. Cooper
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Kai Chen
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Margaret Nutley
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Alan Cooper
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Garry W. Blakely
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - David T. F. Dryden
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| |
Collapse
|
11
|
Complete nucleotide sequence and determination of the replication region of the sporulation inhibiting plasmid p576 from Bacillus pumilus NRS576. Res Microbiol 2010; 161:772-82. [PMID: 20863889 DOI: 10.1016/j.resmic.2010.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Large plasmids, presumably replicating via the theta mechanism, have been identified in numerous gram-positive bacteria. However, their characterization is rather poor and predominantly limited to those harbored by some (opportunistic) pathogenic bacteria. Here we determined the DNA sequence of the 43.3 kb plasmid p576 from Bacillus pumilus strain NRS576, the first B. pumilus theta-replicating plasmid sequenced. Plasmid p576 has a modular structure, but surprisingly, it does not seem to encode a Rep protein found on most theta-replicating plasmids. However, a ∼1 kb region was identified showing homology with the Rep-independent replication region of Bacillus subtilis plasmid pLS20, and we demonstrated that this region is sufficient for autonomous replication. The plasmid contains various large direct repeat sequences. A likely function could be attributed to at least 15 putative p576 genes. Some of these are predicted to be involved in stable maintenance of the plasmid; others are likely to encode proteins involved in conjugation. p576 also carries a rap-phr cassette whose possible function is discussed.
Collapse
|