1
|
Esikova TZ, Anokhina TO, Suzina NE, Shushkova TV, Wu Y, Solyanikova IP. Characterization of a New Pseudomonas Putida Strain Ch2, a Degrader of Toxic Anthropogenic Compounds Epsilon-Caprolactam and Glyphosate. Microorganisms 2023; 11:microorganisms11030650. [PMID: 36985223 PMCID: PMC10053300 DOI: 10.3390/microorganisms11030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
In this work, a new Ch2 strain was isolated from soils polluted by agrochemical production wastes. This strain has a unique ability to utilize toxic synthetic compounds such as epsilon-caprolactam (CAP) as a sole carbon and energy source and the herbicide glyphosate (GP) as a sole source of phosphorus. Analysis of the nucleotide sequence of the 16S rRNA gene of Ch2 revealed that the strain belongs to the species Pseudomonas putida. This strain grew in the mineral medium containing CAP in a concentration range of 0.5 to 5.0 g/L and utilized 6-aminohexanoic acid and adipic acid, which are the intermediate products of CAP catabolism. The ability of strain Ch2 to degrade CAP is determined by a conjugative megaplasmid that is 550 kb in size. When strain Ch2 is cultured in a mineral medium containing GP (500 mg/L), more intensive utilization of the herbicide occurs in the phase of active growth. In the phase of declining growth, there is an accumulation of aminomethylphosphonic acid, which indicates that the C-N bond is the first site cleaved during GP degradation (glyphosate oxidoreductase pathway). Culture growth in the presence of GP during the early step of its degradation is accompanied by unique substrate-dependent changes in the cytoplasm, including the formation of vesicles of cytoplasmic membrane consisting of specific electron-dense content. There is a debate about whether these membrane formations are analogous to metabolosomes, where the primary degradation of the herbicide can take place. The studied strain is notable for its ability to produce polyhydroxyalkanoates (PHAs) when grown in mineral medium containing GP. At the beginning of the stationary growth phase, it was shown that, the amount and size of PHA inclusions in the cells drastically increased; they filled almost the entire volume of cell cytoplasm. The obtained results show that the strain P. putida Ch2 can be successfully used for the PHAs’ production. Moreover, the ability of P. putida Ch2 to degrade CAP and GP determines the prospects of its application for the biological cleanup of CAP production wastes and in situ bioremediation of soil polluted with GP.
Collapse
Affiliation(s)
- Tatiana Z. Esikova
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
| | - Tatiana O. Anokhina
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
| | - Nataliya E. Suzina
- Laboratory of Cytology of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
| | - Tatiana V. Shushkova
- Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
| | - Yonghong Wu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Inna P. Solyanikova
- Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
- Regional Microbiological Center, Institute of Pharmacy, Chemistry and Biology, Belgorod National Research University, 308015 Belgorod, Russia
- Correspondence:
| |
Collapse
|
2
|
Epsilon-Caprolactam- and Nylon Oligomer-Degrading Bacterium Brevibacterium epidermidis BS3: Characterization and Potential Use in Bioremediation. Microorganisms 2023; 11:microorganisms11020373. [PMID: 36838338 PMCID: PMC9966071 DOI: 10.3390/microorganisms11020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
epsilon-Caprolactam (Caprolactam, CAP), a monomer of the synthetic non-degradable polymer nylon-6, is the major wastewater component in the production of caprolactam and nylon-6. Biological treatment of CAP, using microbes could be a potent alternative to the current waste utilization techniques. This work focuses on the characterization and potential use of caprolactam-degrading bacterial strain BS3 isolated from soils polluted by CAP production wastes. The strain was identified as Brevibacterium epidermidis based on the studies of its morphological, physiological, and biochemical properties and 16S rRNA gene sequence analysis. This study is the first to report the ability of Brevibacterium to utilize CAP. Strain BS3 is an alcalo- and halotolerant organism, that grows within a broad range of CAP concentrations, from 0.5 up to 22.0 g/L, optimally at 1.0-2.0 g/L. A caprolactam biodegradation experiment using gas chromatography showed BS3 to degrade 1.0 g/L CAP over 160 h. In contrast to earlier characterized narrow-specific CAP-degrading bacteria, strain BS3 is also capable of utilizing linear nylon oligomers (oligomers of 6-aminohexanoic acid), CAP polymerization by-products, as sole sources of carbon and energy. The broad range of utilized toxic pollutants, the tolerance for high CAP concentrations, as well as the physiological properties of B. epidermidis BS3, determine the prospects of its use for the biological cleanup of CAP and nylon-6 production wastes that contain CAP, 6-aminohexanoic acid, and low molecular weight oligomer fractions.
Collapse
|
3
|
Syrova DS, Shaposhnikov AI, Yuzikhin OS, Belimov AA. Destruction and Transformation of Phytohormones By Microorganisms. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Esikova TZ, Gafarov AB, Anokhina TO. Genetic Control of Degradation of epsilon-Caprolactam, Toluene, and meta-Xylene in Pseudomonas putida Strain CT3. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Iasakov TR, Anisimova LG, Zharikova NV, Zhurenko EI, Korobov VV, Markusheva TV. Evolution and Comparative Genomics of the pSM22 Plasmid of the IncF/MOBF12 Group. Mol Biol 2019. [DOI: 10.1134/s0026893319040162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Esikova TZ, Volkova OV, Taran SA, Boronin AM. Key role of the dca genes in ε-caprolactam catabolism in Pseudomonas strains. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715050070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Kosheleva IA, Sazonova OI, Izmalkova TY, Boronin AM. Occurrence of the SAL+ phenotype in soil pseudomonads. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714060101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|