2
|
Kosolapova AO, Belousov MV, Sulatskaya AI, Belousova ME, Sulatsky MI, Antonets KS, Volkov KV, Lykholay AN, Shtark OY, Vasileva EN, Zhukov VA, Ivanova AN, Zykin PA, Kuznetsova IM, Turoverov KK, Tikhonovich IA, Nizhnikov AA. Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum. Biomolecules 2019; 9:biom9110694. [PMID: 31690032 PMCID: PMC6920782 DOI: 10.3390/biom9110694] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis and infectious diseases is well known, there is a lack of information concerning the amyloids of symbiotic bacteria. In this study, using the previously developed proteomic method for screening and identification of amyloids (PSIA), we identified amyloidogenic proteins in the proteome of the root nodule bacterium Rhizobium leguminosarum. Among 54 proteins identified, we selected two proteins, RopA and RopB, which are predicted to have β-barrel structure and are likely to be involved in the control of plant-microbial symbiosis. We demonstrated that the full-length RopA and RopB form bona fide amyloid fibrils in vitro. In particular, these fibrils are β-sheet-rich, bind Thioflavin T (ThT), exhibit green birefringence upon staining with Congo Red (CR), and resist treatment with ionic detergents and proteases. The heterologously expressed RopA and RopB intracellularly aggregate in yeast and assemble into amyloid fibrils at the surface of Escherichia coli. The capsules of the R. leguminosarum cells bind CR, exhibit green birefringence, and contain fibrils of RopA and RopB in vivo.
Collapse
Affiliation(s)
- Anastasiia O Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Mikhail V Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Maria E Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Kirill V Volkov
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Anna N Lykholay
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Oksana Y Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Ekaterina N Vasileva
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Vladimir A Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Alexandra N Ivanova
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Komarov Botanical Institute RAS, 197376 Komarov Botanical Institute RAS, Russia.
| | - Pavel A Zykin
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.
| | - Igor A Tikhonovich
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| |
Collapse
|