1
|
Lyashko AV, Timofeeva TA, Rudneva IA, Lomakina NF, Treshchalina AA, Gambaryan AS, Sorokin EV, Tsareva TR, Adams SE, Prilipov AG, Sadykova GK, Timofeev BI, Logunov DY, Gintsburg AL. Antigenic Architecture of the H7N2 Influenza Virus Hemagglutinin Belonging to the North American Lineage. Int J Mol Sci 2023; 25:212. [PMID: 38203384 PMCID: PMC10779424 DOI: 10.3390/ijms25010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The North American low pathogenic H7N2 avian influenza A viruses, which lack the 220-loop in the hemagglutinin (HA), possess dual receptor specificity for avian- and human-like receptors. The purpose of this work was to determine which amino acid substitutions in HA affect viral antigenic and phenotypic properties that may be important for virus evolution. By obtaining escape mutants under the immune pressure of treatment with monoclonal antibodies, antigenically important amino acids were determined to be at positions 125, 135, 157, 160, 198, 200, and 275 (H3 numbering). These positions, except 125 and 275, surround the receptor binding site. The substitutions A135S and A135T led to the appearance of an N-glycosylation site at 133N, which reduced affinity for the avian-like receptor analog and weakened binding with tested monoclonal antibodies. Additionally, the A135S substitution is associated with the adaptation of avian viruses to mammals (cat, human, or mouse). The mutation A160V decreased virulence in mice and increased affinity for the human-type receptor analog. Conversely, substitution G198E, in combination with 157N or 160E, displayed reduced affinity for the human-type receptor analog.
Collapse
Affiliation(s)
- Aleksandr V. Lyashko
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Tatiana A. Timofeeva
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Irina A. Rudneva
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Natalia F. Lomakina
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Anastasia A. Treshchalina
- Federal Scientific Center for the Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia (A.S.G.)
| | - Alexandra S. Gambaryan
- Federal Scientific Center for the Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia (A.S.G.)
| | - Evgenii V. Sorokin
- The Smorodintsev Research Institute of Influenza, the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia
| | - Tatiana R. Tsareva
- The Smorodintsev Research Institute of Influenza, the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia
| | - Simone E. Adams
- Institute of Microbiology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Alexey G. Prilipov
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Galina K. Sadykova
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Boris I. Timofeev
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Denis Y. Logunov
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Alexander L. Gintsburg
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| |
Collapse
|
2
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
3
|
Garaev TM, Odnovorov AI, Lashkov AA, Grebennikova TV, Finogenova MP, Sadykova GK, Prilipov AG, Timofeeva TA, Rubinsky SV, Norkina SN, Zhuravleva MM. Studying the Effect of Amino Acid Substitutions in the M2 Ion Channel of the Influenza Virus on the Antiviral Activity of the Aminoadamantane Derivative In Vitro and In Silico. Adv Pharm Bull 2021; 11:700-711. [PMID: 34888217 PMCID: PMC8642805 DOI: 10.34172/apb.2021.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose: The aminoadamantane derivative of L-histidyl-1-adamantayl ethylamine hydrochloride (HCl*H-His-Rim) has showed a high inhibition level against influenza A virus strains in vitro. The aim of this work is to search and establish evidence of the direct effect of the drug on influenza A virus proton channel M2.
Methods: The compound HCl*H-His-Rim was obtained by classical peptide synthesis methods. Influenza A virus mutants of A/PuertoRico/8/34(H1N1) strain were obtained by reverse genetics methods. The mutant samples of the virus were cultured on chicken embryos with a virus titer in the hemagglutination test. ELISA was carried out on Madin-Darby canine kidney (MDCK) monolayer cells when multiplying the virus 10-4-10-6. The binding stability of HCl*H-His-Rim was compared to those of M2 (S31N) and M2 (S31N_A30T) channels by molecular dynamic (MD) modeling. The calculation was performed taking into account the interaction with the model lipid bilayer (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) in the presence of water molecules in accordance with the three-center model.
Results: It was found that HCl*H-His-Rim is a direct action drug against influenza A. The most likely conformation of drug binding to target protein has been shown. It has been found that the A30T mutation reduces the binding energy of the drug, and the results obtained in vitro have confirmed the data calculated in silico.
Conclusion: The mechanism of action of HCl*H-His-Rim is directly related to the suppression of the function of the proton channel M2 of influenza A virus.
Collapse
Affiliation(s)
- Timur Mansurovich Garaev
- Federal State Budgetary Institution «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F.Gamaleya» of the Ministry of Health of the Russian Federation (N.F.Gamaleya NRCEM), 123098, Moscow, Russian Federation
| | - Artyom Irorevich Odnovorov
- Peoples Friendship University of Russia (RUDN University), Ministry of Education of the Russian Federation, 117198, Moscow, Russian Federation
| | | | - Tatiana Vladimirovna Grebennikova
- Federal State Budgetary Institution «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F.Gamaleya» of the Ministry of Health of the Russian Federation (N.F.Gamaleya NRCEM), 123098, Moscow, Russian Federation
| | - Marina Pavlovna Finogenova
- Federal State Budgetary Institution «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F.Gamaleya» of the Ministry of Health of the Russian Federation (N.F.Gamaleya NRCEM), 123098, Moscow, Russian Federation
| | - Galina Kadymovna Sadykova
- Federal State Budgetary Institution «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F.Gamaleya» of the Ministry of Health of the Russian Federation (N.F.Gamaleya NRCEM), 123098, Moscow, Russian Federation
| | - Alexei Gennadievich Prilipov
- Federal State Budgetary Institution «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F.Gamaleya» of the Ministry of Health of the Russian Federation (N.F.Gamaleya NRCEM), 123098, Moscow, Russian Federation
| | - Tatiana Anatol'evna Timofeeva
- Federal State Budgetary Institution «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F.Gamaleya» of the Ministry of Health of the Russian Federation (N.F.Gamaleya NRCEM), 123098, Moscow, Russian Federation
| | | | - Svetlana Nikolaevna Norkina
- Federal State Budgetary Institution «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F.Gamaleya» of the Ministry of Health of the Russian Federation (N.F.Gamaleya NRCEM), 123098, Moscow, Russian Federation
| | - Marina Mikhailovna Zhuravleva
- Federal State Budgetary Institution «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F.Gamaleya» of the Ministry of Health of the Russian Federation (N.F.Gamaleya NRCEM), 123098, Moscow, Russian Federation
| |
Collapse
|
4
|
Timofeeva TA, Sadykova GK, Lomakina NF, Gambaryan AS, Rudneva IA, Timofeeva EB, Shilov AA, Boravleva EY, Zhuravleva MM, Ivanov PA, Ryazanova EL, Prilipov AG. The Effect of I155T, K156Q, K156E and N186K Mutations in Hemagglutinin on the Virulence and Reproduction of Influenza A/H5N1 Viruses. Mol Biol 2021; 54:861-869. [PMID: 33424035 PMCID: PMC7783499 DOI: 10.1134/s0026893320060126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022]
Abstract
The continued circulation of influenza A virus subtype H5 may cause the emergence of new potential pandemic virus variants, which can be transmitted from person to person. The occurrence of such variants is mainly related to mutations in hemagglutinin (HA). Previously we discovered mutations in H5N1 influenza virus hemagglutinin, which contributes to virus immune evasion. The purpose of this work was to study the role of these mutations in changing other, non-antigenic properties of the virus and the possibility of their maintenance in the viral population. Mutations were introduced into the HA gene of a recombinant H5N1 influenza A virus (VNH5N1-PR8/CDC-RG) using site-specific mutagenesis. The "variant" viruses were investigated and compared with respect to replication kinetics in chicken embryos, thermostability, reproductive activity at different temperatures (33, 37 and 40°C), and virulence for mice. Amino acid substitutions I155T, K156Q, K156E+V138A, N186K led to a decrease in thermal stability, replication activity of the mutant viruses in chicken embryos, and virulence for mice, although these effects differed between the variants. The K156Q and N186K mutations reduced viral reproduction at elevated temperature (40°C). The analysis of the frequency of these mutations in natural isolates of H5N1 influenza viruses indicated that the K156E/Q and N186K mutations have little chance to gain a foothold during evolution, in contrast to the I155T mutation, which is the most responsible for antigenic drift. The A138V and N186K mutations seem to be adaptive in mammalian viruses.
Collapse
Affiliation(s)
- T. A. Timofeeva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - G. K. Sadykova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - N. F. Lomakina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - A. S. Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
| | - I. A. Rudneva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - E. B. Timofeeva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - A. A. Shilov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - E. Y. Boravleva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
| | - M. M. Zhuravleva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - P. A. Ivanov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - E. L. Ryazanova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| | - A. G. Prilipov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|