1
|
Markov OV, Sen’kova AV, Mohamed IS, Shmendel EV, Maslov MA, Oshchepkova AL, Brenner EV, Mironova NL, Zenkova MA. Dendritic Cell-Derived Artificial Microvesicles Inhibit RLS 40 Lymphosarcoma Growth in Mice via Stimulation of Th1/Th17 Immune Response. Pharmaceutics 2022; 14:pharmaceutics14112542. [PMID: 36432733 PMCID: PMC9696603 DOI: 10.3390/pharmaceutics14112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cell-free antitumor vaccines represent a promising approach to immunotherapy of cancer. Here, we compare the antitumor potential of cell-free vaccines based on microvesicles derived from dendritic cells (DCs) with DC- and cationic-liposome-based vaccines using a murine model of drug-resistant lymphosarcoma RLS40 in vivo. The vaccines were the following: microvesicle vaccines—cytochalasin B-induced membrane vesicles (CIMVs) obtained from DCs loaded with total tumor RNA using cholesterol/spermine-containing cationic liposomes L or mannosylated liposomes ML; DC vaccines—murine DCs loaded with total tumor-derived RNA using the same liposomes; and liposomal vaccines—lipoplexes of total tumor-derived RNA with liposomes L or ML. Being non-hepatotoxic, CIMV- and DC-based vaccines administered subcutaneously exhibited comparable potential to stimulate highly efficient antitumor CTLs in vivo, whereas liposomal vaccines were 25% weaker CTL inducers. Nevertheless, the antitumor efficiencies of the different types of the vaccines were similar: sizes of tumor nodes and the number of liver metastases were significantly decreased, regardless of the vaccine type. Notably, the booster vaccination did not improve the overall antitumor efficacy of the vaccines under the study. CIMV- and DC- based vaccines more efficiently than liposome-based ones decreased mitotic activity of tumor cells and induced their apoptosis, stimulated accumulation of neutrophil inflammatory infiltration in tumor tissue, and had a more pronounced immunomodulatory activity toward the spleen and thymus. Administration of CIMV-, DC-, and liposome-based vaccines resulted in activation of Th1/Th17 cells as well as the induction of positive immune checkpoint 4-1BBL and downregulation of suppressive immune checkpoints in a raw PD-1 >>> TIGIT > CTLA4 > TIM3. We demonstrated that cell-free CIMV-based vaccines exhibited superior antitumor and antimetastatic activity in a tumor model in vivo. The obtained results can be considered as the basis for developing novel strategies for oncoimmunotherapy.
Collapse
Affiliation(s)
- Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-61
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Islam S. Mohamed
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Elena V. Shmendel
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Ave. 86, 119571 Moscow, Russia
| | - Mikhail A. Maslov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Ave. 86, 119571 Moscow, Russia
| | - Anastasiya L. Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Evgeniy V. Brenner
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Gladkikh DV, Sen′kova AV, Chernikov IV, Kabilova TO, Popova NA, Nikolin VP, Shmendel EV, Maslov MA, Vlassov VV, Zenkova MA, Chernolovskaya EL. Folate-Equipped Cationic Liposomes Deliver Anti-MDR1-siRNA to the Tumor and Increase the Efficiency of Chemotherapy. Pharmaceutics 2021; 13:pharmaceutics13081252. [PMID: 34452213 PMCID: PMC8399439 DOI: 10.3390/pharmaceutics13081252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we examined the in vivo toxicity of the liposomes F consisting of 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride, lipid-helper 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and folate lipoconjugate (O-{2-[rac-2,3-di(tetradecyloxy)prop-1-yloxycarbonyl]aminoethyl}-O'-[2-(pteroyl-L-glutam-5-yl)aminoethyl]octadecaethyleneglycol) and investigated the antitumor effect of combined antitumor therapy consisting of MDR1-targeted siMDR/F complexes and conventional polychemotherapy using tumor xenograft initiated in immunodeficient mice. Detailed analysis of acute and chronic toxicity of this liposomal formulation in healthy C57BL/6J mice demonstrated that formulation F and parent formulation L (without folate lipoconjugate) have no acute and chronic toxicity in mice. The study of the biodistribution of siMDR/F lipoplexes in SCID mice with xenograft tumors formed by tumor cells differing in the expression level of folate receptors showed that the accumulation in various types of tumors strongly depends on the abandons of folate receptors in tumor cells and effective accumulation occurs only in tumors formed by cells with the highest FR levels. Investigating the effects of combined therapy including anti-MDR1 siRNA/F complexes and polychemotherapy on a multidrug-resistant KB-8-5 tumor xenograft in SCID mice demonstrated that siMDR/F increases the efficiency of polychemotherapy: the treatment leads to pronounced inhibition of tumor growth, reduced necrosis and inflammation, and stimulates apoptosis in KB-8-5 tumor tissue. At the same time, it does not induce liver toxicity in tumor-bearing mice. These data confirm that folate-containing liposome F mediated the extremely efficient delivery of siRNA in FR-expressing tumors in vivo and ensured the safety and effectiveness of its action.
Collapse
Affiliation(s)
- Daniil V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Aleksandra V. Sen′kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Tatyana O. Kabilova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Nelly A. Popova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Acad. Lavrentjev Avenue, 630090 Novosibirsk, Russia; (N.A.P.); (V.P.N.)
| | - Valery P. Nikolin
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Acad. Lavrentjev Avenue, 630090 Novosibirsk, Russia; (N.A.P.); (V.P.N.)
| | - Elena V. Shmendel
- Institute of Fine Chemical Technologies, MIREA, Russian Technological University, 119571 Moscow, Russia; (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Institute of Fine Chemical Technologies, MIREA, Russian Technological University, 119571 Moscow, Russia; (E.V.S.); (M.A.M.)
| | - Valentin V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
- Correspondence: ; Tel.: +7-383-363-5161
| |
Collapse
|
4
|
Mannosylated polylactic-co-glycolic acid (MN-PLGA) nanoparticles induce potent anti-tumor immunity in murine model of breast cancer. Biomed Pharmacother 2021; 142:111962. [PMID: 34358752 DOI: 10.1016/j.biopha.2021.111962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Nanoparticle-based cancer immunotherapy is considered a novel and promising therapeutic strategy aimed at stimulating host immune responses against tumors. To this end, in the present study, mannan-decorated polylactic-co-glycolic acid (PLGA) nanoparticles containing tumor cell lysate (TCL) and poly riboinosinic polycytidylic acid (poly I:C) were used as antigen delivery systems to immunize breast tumor-bearing Balb/c mice. PLGA nanoparticles were fabricated employing a double emulsion solvent evaporation method. The formation of spherical and uniform nanoparticles (NPs) ranging 150-250 nm was detected by field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS). Four nanoformulation were used to treat mice and vaccination-induced immunological responses. Tumor regression and overall survival rate were evaluated in four experimental groups. Tumor cell lysate and poly I:C loaded mannan-decorated nanoparticles (TCL-Poly I:C) NP-MN caused a significant decrease in tumor growth and 2- to 3-fold improvement in survival times of the treated mice. The NPs with or without mannan decoration elicited stronger responses in terms of lymphocyte proliferation, delayed-type hypersensitivity and CD107a expression. Moreover, our data indicated that the production of IFN-γ and IL-2 increased while the production of IL-4 and IL-10 decreased in splenocytes culture supernatants. In the pathological evaluations, we found that necrosis and immune cells infiltration rate in the tumor tissue of the treated mice was elevated, while tumor cellularity and lung metastases significantly decreased in particular in the group that received (TCL-Poly I:C) NP-MN. Altogether, our findings suggested that the mannan-decorated PLGA NPs antigen delivery system had significant anti-tumor effects against the murine model of breast cancer and it could be considered as a step forward to human breast cancer immunotherapy.
Collapse
|
5
|
Dai D, Yin Y, Hu Y, Lu Y, Zou H, Lu G, Wang Q, Lian J, Gao J, Shen X. Tumor RNA-loaded nanoliposomes increases the anti-tumor immune response in colorectal cancer. Drug Deliv 2021; 28:1548-1561. [PMID: 34286631 PMCID: PMC8297404 DOI: 10.1080/10717544.2021.1954727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose Tumor RNA vaccines can activate dendritic cells to generate systemic anti-tumor immune response. However, due to easily degraded of RNA, direct RNA vaccine is less effective. In this study, we optimized the method for preparing PEGylated liposom-polycationic DNA complex (LPD) nanoliposomes, increased encapsulate amount of total RNA derived from CT-26 colorectal cancer cells. Tumor RNA LPD nanoliposomes vaccines improved anti-tumor immune response ability of tumor RNA and can effectively promote anti-tumor therapeutic effect of oxaliplatin. Methods Total tumor-derived RNA was extracted from colorectal cancer cells (CT-26 cells), and loaded to our optimized the LPD complex, resulting in the LPD nanoliposomes. We evaluated the characteristics (size, zeta potential, and stability), cytotoxicity, transfection ability, and tumor-growth inhibitory efficacy of LPD nanoliposomes. Results The improved LPD nanoliposomes exhibited a spherical shape, RNA loading efficiency of 9.07%, the average size of 120.37 ± 2.949 nm and zeta potential was 3.34 ± 0.056 mV. Also, the improved LPD nanoliposomes showed high stability at 4 °C, with a low toxicity and high cell transfection efficacy toward CT-26 colorectal cancer cells. Notably, the improved LPD nanoliposomes showed tumor growth inhibition by activating anti-tumor immune response in CT-26 colorectal cancer bearing mice, with mini side effects toward the normal organs of mice. Furthermore, the effect of the improved LPD nanoliposomes in combination with oxaliplatin can be better than that of oxaliplatin alone. Conclusion The improved LPD nanoliposomes may serve as an effective vaccine to induce antitumor immunity, presenting a new treatment option for colorectal cancer.
Collapse
Affiliation(s)
- Dandong Dai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Department of Pharmaceutical Sciences, Naval Medical University, Shanghai, China
| | - You Yin
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Neurology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Yuanbo Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ying Lu
- Department of Pharmaceutical Sciences, Naval Medical University, Shanghai, China
| | - Hongbo Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - GuangZhao Lu
- Department of Pharmaceutical Sciences, Naval Medical University, Shanghai, China
| | - Qianqian Wang
- Department of Medical Oncology, Hangzhou First People's Hospital, Zhejiang, China
| | - Jie Lian
- Department of Pathology, Shaoxing Shangyu People's Hospital, Zhejiang, China
| | - Jie Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
6
|
Puchkov PA, Maslov MA. Lipophilic Polyamines as Promising Components of Liposomal Gene Delivery Systems. Pharmaceutics 2021; 13:920. [PMID: 34205825 PMCID: PMC8234823 DOI: 10.3390/pharmaceutics13060920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Gene therapy requires an effective and safe delivery vehicle for nucleic acids. In the case of non-viral vehicles, including cationic liposomes, the structure of compounds composing them determines the efficiency a lot. Currently, cationic amphiphiles are the most frequently used compounds in liposomal formulations. In their structure, which is a combination of hydrophobic and cationic domains and includes spacer groups, each component contributes to the resulting delivery efficiency. This review focuses on polycationic and disulfide amphiphiles as prospective cationic amphiphiles for gene therapy and includes a discussion of the mutual influence of structural components.
Collapse
Affiliation(s)
| | - Michael A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia;
| |
Collapse
|
7
|
Zhang Y, Xie F, Yin Y, Zhang Q, Jin H, Wu Y, Pang L, Li J, Gao J. Immunotherapy of Tumor RNA-Loaded Lipid Nanoparticles Against Hepatocellular Carcinoma. Int J Nanomedicine 2021; 16:1553-1564. [PMID: 33658783 PMCID: PMC7920588 DOI: 10.2147/ijn.s291421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Most current therapeutic strategies primarily include localized treatment, lacking effective systemic strategies. Meanwhile, recent studies have suggested that RNA vaccines can effectively activate antigen-presenting cells (APCs) and lymphocytes to produce a strong systemic immune response and inhibit tumor growth. However, tumor vaccines loaded with a single tumor antigen may induce immunosuppression and immune evasion, while identifying tumor-specific antigens can require expensive and laborious procedures. Therefore, the use of whole tumor cell antigens are currently considered to be promising, potentially effective, methods. Previously, we developed a targeted liposome-polycation-DNA (LPD) complex nanoparticle that possess a small size, high RNA encapsulation efficiency, and superior serum stability. These particles were found to successfully deliver RNA to tumor sites. In the current study, we encapsulated total tumor-derived RNA in lipid nanoparticles (LNPs) to target dendritic cells (DCs) to incite expeditious and robust anti-tumor immunity. METHODS Total tumor-derived RNA was extracted from liver cancer cells (Hepa1-6 cells). LNPs loaded with tumor RNA were then prepared thin-film hydration method. The ability of RNA LNPs to induce DC maturation, cytotoxicity, and anti-tumor activity, was investigated in vitro and in vivo. RESULTS The average particle size of LNPs and RNA LNPs was 102.22 ± 4.05 nm and 209.68 ± 6.14 nm, respectively, while the zeta potential was 29.97 ± 0.61 mV and 42.03 ± 0.42 mV, respectively. Both LNPs and RNA LNP vaccines exhibited good distribution and stability. In vitro, RNA LNP vaccines were capable of promoting DC maturation and inducing T lymphocytes to kill Hepa1-6 cells. In vivo, RNA LNP vaccines effectively prevent and inhibit HCC growth. CONCLUSION RNA LNPs may serve as an effective antigen specific vaccine to induce anti-tumor immunity for HCC.
Collapse
Affiliation(s)
- Yake Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People’s Republic of China
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, People’s Republic of China
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, People’s Republic of China
| | - You Yin
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Hong Jin
- Department of Laboratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Liying Pang
- The First Clinical Medical College of Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, People’s Republic of China
| | - Jie Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People’s Republic of China
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, People’s Republic of China
| |
Collapse
|
8
|
Yazdani M, Jaafari MR, Verdi J, Alani B, Noureddini M, Badiee A. Ex vivo-generated dendritic cell-based vaccines in melanoma: the role of nanoparticulate delivery systems. Immunotherapy 2020; 12:333-349. [DOI: 10.2217/imt-2019-0173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a poor immunogenic cancer and many treatment strategies have been used to enhance specific or nonspecific immunity against it. Dendritic cell (DC)-based cancer vaccine is the most effective therapies that have been used so far. Meanwhile, the efficacy of DC-based immunotherapy relies on critical factors relating to DCs such as the state of maturation and proper delivery of antigens. In this regard, the use of nanoparticulate delivery systems for effective delivery of antigen to ex vivo-generated DC-based vaccines that also poses adjuvanticity would be an ideal approach. In this review article, we attempt to summarize the role of different types of nanoparticulate antigen delivery systems used in the development of ex vivo-generated DC-based vaccines against melanoma and describe their adjuvanticity in mediation of DC maturation, cytoplasmic presentation of antigens to MHC class I molecules, which led to potent antigen-specific immune responses. As were represented, cationic liposomes were the most used approach, which suggest its potential applicability as delivery systems for further experiments in combination with either adjuvants or monoclonal antibodies.
Collapse
Affiliation(s)
- Mona Yazdani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Mahdi Noureddini
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 91778-99191, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| |
Collapse
|