Vzorov AN, Samokhvalov EI, Chebanenko VV, Scheblyakov DV, Gintsburg AL. Modification of the Spike Protein for Vaccines against Enveloped RNA Viruses.
Mol Biol 2021;
55:538-547. [PMID:
34465926 PMCID:
PMC8390073 DOI:
10.1134/s0026893321030158]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022]
Abstract
Most vaccines work by inducing neutralizing antibodies that target the viral envelope. Enveloped RNA viruses have evolved mechanisms for surface glycoproteins to evade host immune responses, which exhibit substantial variability, even among different strains. Natural infection and vaccines using native forms of surface proteins may induce broadly neutralizing antibodies, yet with low and ineffective levels. Class I membrane-fusion proteins of enveloped RNA viruses, HIV-1, influenza A virus, SARS-CoV-2, yield a stable conformation (so-called "pre-fusion") in providing fusion between viral and host cell membranes. Modified viral surface proteins that are based on these features induce neutralizing antibodies with activity available against a broad spectrum of circulating strains and make it possible to overcome the difficulties associated with escape/variability of viral antigen.
Collapse