1
|
Kozin SA. Role of Interaction between Zinc and Amyloid Beta in Pathogenesis of Alzheimer’s Disease. BIOCHEMISTRY (MOSCOW) 2023; 88:S75-S87. [PMID: 37069115 DOI: 10.1134/s0006297923140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Progression of Alzheimer's disease is accompanied by the appearance of extracellular deposits in the brain tissues of patients with characteristic supramolecular morphology (amyloid plaques) the main components of which are β-amyloid isoforms (Aβ) and biometal ions (zinc, copper, iron). For nearly 40 years and up to the present time, the vast majority of experimental data indicate critical role of formation and accumulation of amyloid plaques (cerebral amyloidogenesis) in pathogenesis of Alzheimer's disease, however, nature of the molecular agents that initiate cerebral amyloidogenesis, as well as causes of aggregation of the native Aβ molecules in vivo remained unknown for a long time. This review discusses the current level of fundamental knowledge about the molecular mechanisms of interactions of zinc ions with a number of Aβ isoforms present in amyloid plaques of the patients with Alzheimer's disease, and also shows how this knowledge made it possible to identify driving forces of the cerebral amyloidogenesis in Alzheimer's disease and made it possible to determine fundamentally new biomarkers and drug targets as part of development of innovative strategy for diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Bild W, Vasincu A, Rusu RN, Ababei DC, Stana AB, Stanciu GD, Savu B, Bild V. Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules 2022; 12:1429. [PMID: 36291638 PMCID: PMC9599929 DOI: 10.3390/biom12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Brain neurodegenerative diseases (BND) are debilitating conditions that are especially characteristic of a certain period of life and considered major threats to human health. Current treatments are limited, meaning that there is a challenge in developing new options that can efficiently tackle the different components and pathophysiological processes of these conditions. The renin-angiotensin-aldosterone system (RAS) is an endocrine axis with important peripheral physiological functions such as blood pressure and cardiovascular homeostasis, as well as water and sodium balance and systemic vascular resistance-functions which are well-documented. However, recent work has highlighted the paracrine and autocrine functions of RAS in different tissues, including the central nervous system (CNS). It is known that RAS hyperactivation has pro-inflammatory and pro-oxidant effects, thus suggesting that its pharmacological modulation could be used in the management of these conditions. The present paper underlines the involvement of RAS and its components in the pathophysiology of BNDs such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), motor neuron disease (MND), and prion disease (PRD), as well as the identification of drugs and pharmacologically active substances that act upon RAS, which could alleviate their symptomatology or evolution, and thus, contribute to novel therapeutic approaches.
Collapse
Affiliation(s)
- Walther Bild
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Aurelian Bogdan Stana
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Bogdan Savu
- Department of Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Bild
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
3
|
Young KA, Mancera RL. Review: Investigating the aggregation of amyloid beta with surface plasmon resonance: Do different approaches yield different results? Anal Biochem 2022; 654:114828. [PMID: 35931183 DOI: 10.1016/j.ab.2022.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid beta into amyloid plaques in the brain is a hallmark characteristic of Alzheimer's disease. Therapeutics aimed at preventing or retarding amyloid formation often rely on detailed characterization of the underlying mechanism and kinetics of protein aggregation. Surface plasmon resonance (SPR) spectroscopy is a robust technique used to determine binding affinity and kinetics of biomolecular interactions. This approach has been used to characterize the mechanism of aggregation of amyloid beta but there are multiple pitfalls that need to be addressed when working with this and other amyloidogenic proteins. The choice of method for analyte preparation and ligand immobilization to a sensor chip can lead to different theoretical and practical implications in terms of the mathematical modelling of binding data, different mechanisms of binding and the presence of different interacting species. This review examines preparation methods for SPR characterisation of the aggregation of amyloid beta and their influence on the findings derived from such studies.
Collapse
Affiliation(s)
- Kimberly A Young
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
4
|
Deigin VI, Poluektova EA, Beniashvili AG, Kozin SA, Poluektov YM. Development of Peptide Biopharmaceuticals in Russia. Pharmaceutics 2022; 14:pharmaceutics14040716. [PMID: 35456550 PMCID: PMC9030433 DOI: 10.3390/pharmaceutics14040716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Peptides are low-molecular-weight substances that participate in numerous important physiological functions, such as human growth and development, stress, regulation of the emotional state, sexual behavior, and immune responses. Their mechanisms of action are based on receptor–ligand interactions, which result in highly selective effects. These properties and low toxicity enable them to be considered potent drugs. Peptide preparations became possible at the beginning of the 20th century after a method was developed for selectively synthesizing peptides; however, after synthesis of the first peptide drugs, several issues related to increasing the stability, bioavailability, half-life, and ability to move across cell membranes remain unresolved. Here, we briefly review the history of peptide production and development in the biochemical industry and outline potential areas of peptide biopharmaceutical applications and modern approaches for creating pharmaceuticals based on synthetic peptides and their analogs. We also focus on original peptide drugs and the approaches used for their development by the Russian Federation.
Collapse
Affiliation(s)
- Vladislav I. Deigin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Moscow, Russia;
| | - Elena A. Poluektova
- Department of Propaedeutics of Internal Diseases, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Allan G. Beniashvili
- Mental Health Research Center, Federal State Budgetary Scientific Institution, Ministry of Health of the Russian Federation, 115522 Moscow, Russia;
| | - Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Correspondence: ; Tel.: +7-916-407-7570
| |
Collapse
|
5
|
Ershov PV, Mezentsev YV, Yablokov EO, Kaluzgskiy LA, Ivanov AS, Gnuchev NV, Mitkevich VA, Makarov AA, Kozin SA. Direct Molecular Fishing of Zinc-Dependent Protein Partners of Amyloid-beta 1–16 with the Taiwan (D7H) Mutation and Phosphorylated Ser8 Residue. Mol Biol 2021. [DOI: 10.1134/s0026893320060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Daoud NEHK, Alzweiri M. Inhibitory Binding of Angiotensin Converting Enzyme Inhibitors with Carbonic Anhydrase III. Chromatographia 2020. [DOI: 10.1007/s10337-020-03973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Tetrapeptide Ac-HAEE-NH 2 Protects α4β2 nAChR from Inhibition by Aβ. Int J Mol Sci 2020; 21:ijms21176272. [PMID: 32872553 PMCID: PMC7504039 DOI: 10.3390/ijms21176272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
The cholinergic deficit in Alzheimer’s disease (AD) may arise from selective loss of cholinergic neurons caused by the binding of Aβ peptide to nicotinic acetylcholine receptors (nAChRs). Thus, compounds preventing such an interaction are needed to address the cholinergic dysfunction. Recent findings suggest that the 11EVHH14 site in Aβ peptide mediates its interaction with α4β2 nAChR. This site contains several charged amino acid residues, hence we hypothesized that the formation of Aβ-α4β2 nAChR complex is based on the interaction of 11EVHH14 with its charge-complementary counterpart in α4β2 nAChR. Indeed, we discovered a 35HAEE38 site in α4β2 nAChR, which is charge-complementary to 11EVHH14, and molecular modeling showed that a stable Aβ42-α4β2 nAChR complex could be formed via the 11EVHH14:35HAEE38 interface. Using surface plasmon resonance and bioinformatics approaches, we further showed that a corresponding tetrapeptide Ac-HAEE-NH2 can bind to Aβ via 11EVHH14 site. Finally, using two-electrode voltage clamp in Xenopus laevis oocytes, we showed that Ac-HAEE-NH2 tetrapeptide completely abolishes the Aβ42-induced inhibition of α4β2 nAChR. Thus, we suggest that 35HAEE38 is a potential binding site for Aβ on α4β2 nAChR and Ac-HAEE-NH2 tetrapeptide corresponding to this site is a potential therapeutic for the treatment of α4β2 nAChR-dependent cholinergic dysfunction in AD.
Collapse
|
8
|
Long non-coding RNA and mRNA analysis of Ang II-induced neuronal dysfunction. Mol Biol Rep 2019; 46:3233-3246. [PMID: 30945068 DOI: 10.1007/s11033-019-04783-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/22/2019] [Indexed: 02/03/2023]
Abstract
The sustained activation of Angiotensin II (Ang II) induces the remodelling of neurovascular units, inflammation and oxidative stress reactions in the brain. Long non-coding RNAs (lncRNAs) play a crucial regulatory role in the pathogenesis of hypertensive neuronal damage. The present study aimed to substantially extend the list of potential candidate genes involved in Ang II-related neuronal damage. This study assessed apoptosis and energy metabolism with Annexin V/PI staining and a Seahorse assay after Ang II exposure in SH-SY5Y cells. The expression of mRNA and lncRNA was investigated by transcriptome sequencing. The integrated analysis of mRNA and lncRNAs and the molecular mechanism of Ang II on neuronal injury was analysed by bioinformatics. Ang II increased the apoptosis rate and reduced the energy metabolism of SH-SY5Y cells. The data showed that 702 mRNAs and 821 lncRNAs were differentially expressed in response to Ang II exposure (244 mRNAs and 432 lncRNAs were upregulated, 458 mRNAs and 389 lncRNAs were downregulated) (fold change ≥ 1.5, P < 0.05). GO and KEGG analyses showed that both DE mRNA and DE lncRNA were enriched in the metabolism, differentiation, apoptosis and repair of nerve cells. This is the first report of the lncRNA-mRNA integrated profile of SH-SY5Y cells induced by Ang II. The novel targets revealed that the metabolism of the vitamin B group, the synthesis of unsaturated fatty acids and glycosphingolipids are involved in the Ang II-related cognitive impairment. Sphingolipid metabolism, the Hedgehog signalling pathway and vasopressin-regulated water reabsorption play important roles in nerve damage.
Collapse
|
9
|
Nikolenko VN, Oganesyan MV, Yakhno NN, Orlov EA, Porubayeva EE, Popova EY. The brain’sglymphatic system:physiological anatomy and clinical perspectives. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2018; 10:94-100. [DOI: 10.14412/2074-2711-2018-4-94-100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The recently discovered glymphatic system (GS) ensures the efficient clearance of interstitial fluid and soluble compounds from the central nervous system into cerebrospinal fluid (CSF), which compensates for the lack of conventional lymphatic vessels in the brain parenchyma. This unique anatomical and physiological phenomenon had been unknown until 2012. GS lacks inherent proper vessels Р the current of CSF and interstitial fluid is carried out directly inside the arterial walls (the perivascular pathway) or near the walls of the cerebral arteries and veins (the paravascular pathway). Current biorheological technologies could establish a special role of aquaporin-4 in the filtration of CSF and interstitial fluid. The close link between GS and the CSF circulatory system allows the established views on fluid dynamics within the brain to be reconsidered. The discovery of GS can contribute to our understanding of the pathogenesis of increased intracranial pressure and neurodegenerative diseases, as well as to the elaboration of new therapeutic approaches to their treatment.
Collapse
Affiliation(s)
- V. N. Nikolenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - M. V. Oganesyan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | | | - E. A. Orlov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - E. E. Porubayeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - E. Yu. Popova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|