1
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Cuproptosis regulation by long noncoding RNAs: Mechanistic insights and clinical implications in cancer. Arch Biochem Biophys 2025; 765:110324. [PMID: 39900259 DOI: 10.1016/j.abb.2025.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Although survival rates have been improved in recent years, the prognosis of many cancer types remains inadequate, mostly owing to treatment resistance. Moreover, there is a continued need for exploring novel and reliable tumor markers to achieve accurate diagnosis. Understanding the molecular complexity of cancer allows for the development of more effective and personalized treatments and facilitates the discovery of biomarkers that surpass traditional ones and assist in cancer diagnosis and monitoring disease progression and response to treatment. Recent studies exploring the complexity of cancer biology have identified a new form of cell death, known as cuproptosis, which is driven by the accumulation of copper and subsequent stress induced by dysregulation of copper homeostasis. Increased copper level enables cancer cells to maintain their accelerated growth rates and metastatic potential, yet these cells can evade cuproptosis. Long noncoding RNAs (lncRNAs) have been recognized for their pivotal role in different hallmarks of cancer, including resistance to cell death. They have been found to be implicated in controlling copper balance and cuproptosis. Besides, lncRNAs associated with cuproptosis pathway have demonstrated their potential as diagnostic and prognostic cancer biomarkers as well as indicators of treatment response. Our review aims to summarize recent studies focusing on the intricate relationship between lncRNAs and cuproptosis and explore the mechanisms by which lncRNAs can modulate copper homeostasis and regulate cuproptosis pathway. We also highlight recent discoveries concerning the role of cuproptosis-related lncRNAs in diagnosis, prognosis, and therapy of different types of cancer. By elucidating the significance of cuproptosis-related lncRNAs, this review provides insights into how these lncRNAs can be used to develop new therapeutic strategies to improve treatment outcomes.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk, Cairo, Postal Code: 11837, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| | - Mariam A Abo-Saif
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| | - Sara M Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| |
Collapse
|
2
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
3
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
4
|
Long noncoding RNA landscapes specific to benign and malignant thyroid neoplasms of distinct histological subtypes. Sci Rep 2021; 11:16728. [PMID: 34408227 PMCID: PMC8373968 DOI: 10.1038/s41598-021-96149-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 01/14/2023] Open
Abstract
The main types of thyroid neoplasms, follicular adenoma (FA), follicular thyroid carcinoma (FTC), classical and follicular variants of papillary carcinoma (clPTC and fvPTC), and anaplastic thyroid carcinoma (ATC), differ in prognosis, progression rate and metastatic behaviour. Specific patterns of lncRNAs involved in the development of clinical and morphological features can be presumed. LncRNA landscapes within distinct benign and malignant histological variants of thyroid neoplasms were not investigated. The aim of the study was to discover long noncoding RNA landscapes common and specific to major benign and malignant histological subtypes of thyroid neoplasms. LncRNA expression in FA, FTC, fvPTC, clPTC and ATC was analysed with comprehensive microarray and RNA-Seq datasets. Putative biological functions were evaluated via enrichment analysis of coexpressed coding genes. In the results, lncRNAs common and specific to FTC, clPTC, fvPTC, and ATC were identified. The discovered lncRNAs are putatively involved in L1CAM interactions, namely, pre-mRNA processing (lncRNAs specific to FTC); PCP/CE and WNT pathways (lncRNAs specific to fvPTC); extracellular matrix organization (lncRNAs specific to clPTC); and the cell cycle (lncRNAs specific to ATC). Known oncogenic and suppressor lncRNAs (RMST, CRNDE, SLC26A4-AS1, NR2F1-AS1, and LINC00511) were aberrantly expressed in thyroid carcinomas. These findings enhance the understanding of lncRNAs in the development of subtype-specific features in thyroid cancer.
Collapse
|
5
|
Han X, Wu J, Zhang Y, Song J, Shi Z, Chang H. LINC00518 Promotes Cell Proliferation by Regulating the Cell Cycle of Lung Adenocarcinoma Through miR-185-3p Targeting MECP2. Front Oncol 2021; 11:646559. [PMID: 33937054 PMCID: PMC8081883 DOI: 10.3389/fonc.2021.646559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have shown that long intergenic non-protein coding RNA 00518 (LINC00518) are essential for the cell growth and metastasis of human cancer. However, the role of LINC00518 in lung adenocarcinoma (LUAD) is still unknown. This research put emphasis on the function of LINC00518 on the cell growth of LUAD. The lncRNA, miRNA and mRNA expression were measured by using qRT-PCR. Protein levels were measured by using Western blotting. CCK-8, colony formation assays and transwell assay were performed to evaluate the cell proliferation ability and invasion. Bioinformatic analysis and luciferase reporter assays were chosen to confirm the mechanism of LINC00518 in LUAD. We found that LINC00518 was highly expressed in LUAD specimens and the high-expression was negatively correlated with the overall survival rates. This finding was also proved in the LUAD cell lines. Through a series of in vitro and in vivo experiments, we proved that LICN00518 promoted the cell growth of LUAD by regulating the cell cycle. Moreover, LICN00518 upregulated the expression of MECP2 by mutagenesis of miR-185-3p. The results suggested that LICN00518 could be used as a survival indicator and potential therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Xu Han
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jixiang Wu
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Yajun Zhang
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jianxiang Song
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Zhan Shi
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Huiwen Chang
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| |
Collapse
|
6
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
7
|
Tatosyan KA, Zinevich LS, Demin DE, Schwartz AM. Functional Characteristics of Long Noncoding RNAs Containing Sequences of Mobile Genetic Elements. Mol Biol 2020. [DOI: 10.1134/s0026893320050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kushlinskii NE, Fridman MV, Braga EA. Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma. Mol Biol 2020; 54:684-707. [DOI: 10.1134/s0026893320050052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2025]
|
9
|
Bure IV, Nemtsova MV, Zaletaev DV. Roles of E-cadherin and Noncoding RNAs in the Epithelial-mesenchymal Transition and Progression in Gastric Cancer. Int J Mol Sci 2019; 20:ijms20122870. [PMID: 31212809 PMCID: PMC6627057 DOI: 10.3390/ijms20122870] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT) is thought to be at the root of invasive and metastatic cancer cell spreading. E-cadherin is an important player in this process, which forms the structures that establish and maintain cell–cell interactions. A partial or complete loss of E-cadherin expression in the EMT is presumably mediated by mechanisms that block the expression of E-cadherin regulators and involve the E-cadherin-associated transcription factors. The protein is involved in several oncogenic signaling pathways, such as the Wnt/β-catenin, Rho GTPase, and EGF/EGFR, whereby it plays a role in many tumors, including gastric cancer. Such noncoding transcripts as microRNAs and long noncoding RNAs—critical components of epigenetic control of gene expression in carcinogenesis—contribute to regulation of the E-cadherin function by acting directly or through numerous factors controlling transcription of its gene, and thus affecting not only cancer cell proliferation and metastasis, but also the EMT. This review focuses on the role of E-cadherin and the non-coding RNAs-mediated mechanisms of its expressional control in the EMT during stomach carcinogenesis.
Collapse
Affiliation(s)
- Irina V Bure
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - Marina V Nemtsova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
- Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow 115522, Russia.
| | - Dmitry V Zaletaev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
- Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow 115522, Russia.
| |
Collapse
|