1
|
Jaouadi H, Morel V, Martel H, Lindenbaum P, de la Chapelle LL, Herbane M, Lucas C, Magdinier F, Gilbert H, Schott JJ, Zaffran S, Nguyen K. Exome sequencing data reanalysis of 200 hypertrophic cardiomyopathy patients: the HYPERGEN French cohort 5 years after the initial analysis. Front Med (Lausanne) 2024; 11:1480947. [PMID: 39554508 PMCID: PMC11565434 DOI: 10.3389/fmed.2024.1480947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Background Approximately half of hypertrophic cardiomyopathy (HCM) patients lack a precise genetic diagnosis. The likelihood of identifying clinically relevant variants increased over time. Methods In this study, we conducted a gene-centric reanalysis of exome data of 200 HCM cases 5 years after the initial analysis. This reanalysis prioritized genes with a matched HCM entry in the OMIM database and recently emerging HCM-associated genes gathered using a text mining-based literature review. Further classification of the identified genes and variants was performed using the Clinical Genome Resource (ClinGen) resource and American College of Medical Genetics and Genomics (ACMG) guidelines to assess the robustness of gene-disease association and the clinical actionability of the prioritized variants. Results As expected, the majority of patients carried variants in MYBPC3 and MYH7 genes, 26% (n = 51) and 8% (n = 16), respectively, in accordance with the initial analysis. The vast majority of pathogenic (P) and likely pathogenic (LP) variants were found in MYBPC3 (22 out of 40 variants) and MYH7 (8 out of 16 variants) genes. Three genes-not included in the initial analysis-were identified: SVIL, FHOD3, and TRIM63. Considering only patients with unique variants in the last three genes, there was a 9% enhancement in variant identification. Importantly, SVIL variant carriers presented apical and septal HCM, aortopathies, and severe scoliosis for one patient. Ten patients (5%) carried variants in the FHOD3 gene, six in hotspot regions (exons 12 and 15). We identified seven variants within the TRIM63 gene in 12 patients (6%). Homozygous variants were detected in 2.5% of the cohort in MYBPC3 (n = 1), MYL3 (n = 1), and TRIM63 (n = 3) genes. Conclusion Our study revealed that no variants were found in the ACTC1, TPM1, and TNNI3 genes in the HYPERGEN cohort. However, we identified variants in five out of the eight HCM core genes, with a high prevalence in young patients. We identified variants in three recent HCM-associated genes (SVIL, FHOD3, and TRIM63) in 35 patients, with 18 patients carrying unique variants (9%). Our results further emphasize the usefulness of exome data reanalysis, particularly in genotype-negative patients.
Collapse
Affiliation(s)
- Hager Jaouadi
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, Marseille, France
| | - Victor Morel
- Department of Medical Genetics, La Timone Hospital, AP-HM, La Timone Children’s Hospital, Marseille, France
| | - Helene Martel
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Pierre Lindenbaum
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du Thorax, Nantes, France
| | | | - Marine Herbane
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, Marseille, France
| | - Claire Lucas
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Frédérique Magdinier
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, Marseille, France
| | - Habib Gilbert
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du Thorax, Nantes, France
| | - Stéphane Zaffran
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, Marseille, France
| | - Karine Nguyen
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, Marseille, France
- Department of Medical Genetics, La Timone Hospital, AP-HM, La Timone Children’s Hospital, Marseille, France
| |
Collapse
|
2
|
Kucher AN, Valiakhmetov NR, Salakhov RR, Golubenko MV, Pavlyukova EN, Nazarenko MS. Phenotype variation of hypertrophic cardiomyopathy in carriers of the p.Arg870His pathogenic variant in the MYH7 gene. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-205-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The review analyzes variability of clinical manifestations of p.Arg870His in the MYH7 gene, which is repeatedly registered in patients with hypertrophic cardiomyopathy (HCM). The analysis involves the data from scientific publications obtained as a search result in the PubMed, СlinVar, and eLibrary.ru databases, as well as authors’ own results. A wide range of phenotypic manifestations have been revealed in carriers of p.Arg870His, from the asymptomatic to severe course, rapid progression, and early death. The review considers possible factors that modify the effect of the pathogenic variant (i.e. dosage of the pathogenic variant, the presence of other unfavorable genetic variants, etc.). The importance of accumulating information on the clinical features of HCM in the carriers of specific gene variants is emphasized in order to clarify their pathogenicity and to identify factors modifying the clinical outcome, which is important for the choice of the treatment strategy for HCM.
Collapse
Affiliation(s)
- A. N. Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - N. R. Valiakhmetov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - R. R. Salakhov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; Siberian State Medical University
| | - M. V. Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - E. N. Pavlyukova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - M. S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; Siberian State Medical University
| |
Collapse
|
3
|
Circulating miR-499a-5p Is a Potential Biomarker of MYH7-Associated Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23073791. [PMID: 35409153 PMCID: PMC8998764 DOI: 10.3390/ijms23073791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disease with significant genetic and phenotypic heterogeneity. To search for novel biomarkers, which could increase the accuracy of HCM diagnosis and improve understanding of its phenotype formation, we analyzed the levels of circulating miRNAs—stable non-coding RNAs involved in post-transcriptional gene regulation. Performed high throughput sequencing of miRNAs in plasma of HCM patients and controls pinpointed miR-499a-5p as one of 35 miRNAs dysregulated in HCM. Further investigation on enlarged groups of individuals showed that its level was higher in carriers of pathogenic/likely pathogenic (P/LP) variants in MYH7 gene compared to controls (fold change, FC = 8.9; p < 0.0001). Just as important, carriers of variants in MYH7 gene were defined with higher miRNA levels than carriers of variants in the MYBPC3 gene (FC = 14.1; p = 0.0003) and other patients (FC = 4.1; p = 0.0008). The receiver operating characteristic analysis analysis showed the ability of miR-499a-5p to identify MYH7 variant carriers with the HCM phenotype with area under the curve value of 0.95 (95% confidence interval: 0.88−1.03, p = 0.0004); sensitivity and specificity were 0.86 and 0.91 (cut-off = 0.0014). Therefore, miR-499a-5p could serve as a circulating biomarker of HCM, caused by P/LP variants in MYH7 gene.
Collapse
|
4
|
Osmak G, Baulina N, Kiselev I, Favorova O. MiRNA-Regulated Pathways for Hypertrophic Cardiomyopathy: Network-Based Approach to Insight into Pathogenesis. Genes (Basel) 2021; 12:genes12122016. [PMID: 34946964 PMCID: PMC8701189 DOI: 10.3390/genes12122016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common hereditary heart disease. The wide spread of high-throughput sequencing casts doubt on its monogenic nature, suggesting the presence of mechanisms of HCM development independent from mutations in sarcomeric genes. From this point of view, HCM may arise from the interactions of several HCM-associated genes, and from disturbance of regulation of their expression. We developed a bioinformatic workflow to study the involvement of signaling pathways in HCM development through analyzing data on human heart-specific gene expression, miRNA-target gene interactions, and protein-protein interactions, available in open databases. Genes regulated by a pool of miRNAs contributing to human cardiac hypertrophy, namely hsa-miR-1-3p, hsa-miR-19b-3p, hsa-miR-21-5p, hsa-miR-29a-3p, hsa-miR-93-5p, hsa-miR-133a-3p, hsa-miR-155-5p, hsa-miR-199a-3p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-451a, and hsa-miR-497-5p, were considered. As a result, we pinpointed a module of TGFβ-mediated SMAD signaling pathways, enriched by targets of the selected miRNAs, that may contribute to the cardiac remodeling in HCM. We suggest that the developed network-based approach could be useful in providing a more accurate glimpse on pathological processes in the disease pathogenesis.
Collapse
Affiliation(s)
- German Osmak
- Laboratory of Functional Genomics of Cardiovascular Disorders, National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.B.); (I.K.); (O.F.)
- Laboratory of Medical Genomics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Correspondence:
| | - Natalia Baulina
- Laboratory of Functional Genomics of Cardiovascular Disorders, National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.B.); (I.K.); (O.F.)
- Laboratory of Medical Genomics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ivan Kiselev
- Laboratory of Functional Genomics of Cardiovascular Disorders, National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.B.); (I.K.); (O.F.)
- Laboratory of Medical Genomics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Olga Favorova
- Laboratory of Functional Genomics of Cardiovascular Disorders, National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.B.); (I.K.); (O.F.)
- Laboratory of Medical Genomics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
5
|
Bonaventura J, Polakova E, Vejtasova V, Veselka J. Genetic Testing in Patients with Hypertrophic Cardiomyopathy. Int J Mol Sci 2021; 22:10401. [PMID: 34638741 PMCID: PMC8509044 DOI: 10.3390/ijms221910401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited heart disease with an estimated prevalence of up to 1 in 200 individuals. In the majority of cases, HCM is considered a Mendelian disease, with mainly autosomal dominant inheritance. Most pathogenic variants are usually detected in genes for sarcomeric proteins. Nowadays, the genetic basis of HCM is believed to be rather complex. Thousands of mutations in more than 60 genes have been described in association with HCM. Nevertheless, screening large numbers of genes results in the identification of many genetic variants of uncertain significance and makes the interpretation of the results difficult. Patients lacking a pathogenic variant are now believed to have non-Mendelian HCM and probably have a better prognosis than patients with sarcomeric pathogenic mutations. Identifying the genetic basis of HCM creates remarkable opportunities to understand how the disease develops, and by extension, how to disrupt the disease progression in the future. The aim of this review is to discuss the brief history and recent advances in the genetics of HCM and the application of molecular genetic testing into common clinical practice.
Collapse
Affiliation(s)
- Jiri Bonaventura
- Department of Cardiology, Motol University Hospital, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (E.P.); (V.V.); (J.V.)
| | | | | | | |
Collapse
|
6
|
Monasky MM, Micaglio E, Ignaccolo S, Pappone C. Further Considerations in Childhood-Onset Hypertrophic Cardiomyopathy Genetic Testing. Front Cardiovasc Med 2021; 8:698078. [PMID: 34235191 PMCID: PMC8255358 DOI: 10.3389/fcvm.2021.698078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Michelle M Monasky
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Silvia Ignaccolo
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Carlo Pappone
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|