1
|
Niharika, Asthana S, Narayan Yadav H, Sharma N, Kumar Singh V. A compendium of methods: Searching allele specific expression via RNA sequencing. Gene 2025; 936:149102. [PMID: 39561903 DOI: 10.1016/j.gene.2024.149102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Diploid mammalian genome has paired alleles for each gene; typically allowing for equal expression of the two alleles within the cell/tissue. However, genetic regulatory elements and epigenetic modifications can disrupt this equality, leading to preferential expression of one allele. Examining high-confidence allele-specific expression (ASE) is vital for understanding genetic variations and their impact on major diseases like cancers and diabetes. ASE analysis not only aids in disease prognosis and diagnosis but also helps to identify regulatory mechanisms operating within the genome. While advances in sequencing technologies have greatly improved our understanding of ASE, challenges remain in estimating it accurately. In this article, we reviewed methods for detecting ASE using both bulk RNASeq and single-cell RNASeq data to provide deeper insights beyond the mere prediction of ASE genes. Fundamentally, ASE detection methods are data-driven and can be classified according to type of data used. Some methods utilize both, DNA genotyping information and RNASeq while others rely solely on RNASeq data. This article offers a comparative analysis of these methods and compilation of repositories providing valuable insights.
Collapse
Affiliation(s)
- Niharika
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Shailendra Asthana
- Computational and Mathematical Biology Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd 15 Milestone, Faridabad-Gurugram 16 expressway, PO Box # 4. Faridabad, Haryana 121001, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Takyelpat, Manipur 795001 Imphal, India.
| | - Vijay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India.
| |
Collapse
|
2
|
Montgomery SA, Berger F. Paternal imprinting in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1000-1006. [PMID: 37936346 DOI: 10.1111/nph.19377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
We are becoming aware of a growing number of organisms that do not express genetic information equally from both parents as a result of an epigenetic phenomenon called genomic imprinting. Recently, it was shown that the entire paternal genome is repressed during the diploid phase of the life cycle of the liverwort Marchantia polymorpha. The deposition of the repressive epigenetic mark H3K27me3 on the male pronucleus is responsible for the imprinted state, which is reset by the end of meiosis. Here, we put these recent reports in perspective of other forms of imprinting and discuss the potential mechanisms of imprinting in bryophytes and the causes of its evolution.
Collapse
Affiliation(s)
- Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), C/ del Dr Aiguader, 88, 08003, Barcelona, Spain
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
3
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Matilla AJ. Exploring Breakthroughs in Three Traits Belonging to Seed Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040490. [PMID: 35214823 PMCID: PMC8875957 DOI: 10.3390/plants11040490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Based on prior knowledge and with the support of new methodology, solid progress in the understanding of seed life has taken place over the few last years. This update reflects recent advances in three key traits of seed life (i.e., preharvest sprouting, genomic imprinting, and stored-mRNA). The first breakthrough refers to cloning of the mitogen-activated protein kinase-kinase 3 (MKK3) gene in barley and wheat. MKK3, in cooperation with ABA signaling, controls seed dormancy. This advance has been determinant in producing improved varieties that are resistant to preharvest sprouting. The second advance concerns to uniparental gene expression (i.e., imprinting). Genomic imprinting primarily occurs in the endosperm. Although great advances have taken place in the last decade, there is still a long way to go to complete the puzzle regarding the role of genomic imprinting in seed development. This trait is probably one of the most important epigenetic facets of developing endosperm. An example of imprinting regulation is polycomb repressive complex 2 (PRC2). The mechanism of PRC2 recruitment to target endosperm with specific genes is, at present, robustly studied. Further progress in the knowledge of recruitment of PRC2 epigenetic machinery is considered in this review. The third breakthrough referred to in this update involves stored mRNA. The role of the population of this mRNA in germination is far from known. Its relations to seed aging, processing bodies (P bodies), and RNA binding proteins (RBPs), and how the stored mRNA is targeted to monosomes, are aspects considered here. Perhaps this third trait is the one that will require greater experimental dedication in the future. In order to make progress, herein are included some questions that are needed to be answered.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Montgomery SA, Berger F. The evolution of imprinting in plants: beyond the seed. PLANT REPRODUCTION 2021; 34:373-383. [PMID: 33914165 PMCID: PMC8566399 DOI: 10.1007/s00497-021-00410-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
Genomic imprinting results in the biased expression of alleles depending on if the allele was inherited from the mother or the father. Despite the prevalence of sexual reproduction across eukaryotes, imprinting is only found in placental mammals, flowering plants, and some insects, suggesting independent evolutionary origins. Numerous hypotheses have been proposed to explain the selective pressures that favour the innovation of imprinted gene expression and each differs in their experimental support and predictions. Due to the lack of investigation of imprinting in land plants, other than angiosperms with triploid endosperm, we do not know whether imprinting occurs in species lacking endosperm and with embryos developing on maternal plants. Here, we discuss the potential for uncovering additional examples of imprinting in land plants and how these observations may provide additional support for one or more existing imprinting hypotheses.
Collapse
Affiliation(s)
- Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
6
|
Sazhenova EA, Nikitina TV, Vasilyev SA, Tolmacheva EN, Vasilyeva OY, Markov AV, Yuryev SY, Skryabin NA, Zarubin AA, Kolesnikov NA, Stepanov VA, Lebedev IN. NLRP7 variants in spontaneous abortions with multilocus imprinting disturbances from women with recurrent pregnancy loss. J Assist Reprod Genet 2021; 38:2893-2908. [PMID: 34554362 PMCID: PMC8608992 DOI: 10.1007/s10815-021-02312-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Comparative analysis of multilocus imprinting disturbances (MLIDs) in miscarriages from women with sporadic (SPL) and recurrent pregnancy loss (RPL) and identification of variants in the imprinting control gene NLRP7 that may lead to MLIDs. METHODS Chorionic cytotrophoblast and extraembryonic mesoderm samples from first-trimester miscarriages were evaluated in 120 women with RPL and 134 women with SPL; 100 induced abortions were analyzed as a control group. All miscarriages had a normal karyotype. Epimutations in 7 imprinted genes were detected using methyl-specific PCR and confirmed with DNA pyrosequencing. Sequencing of all 13 exons and adjusted intron regions of the NLRP7 gene was performed. RESULTS Epimutations in imprinted genes were more frequently detected (p < 0.01) in the placental tissues of miscarriages from women with RPL (7.1%) than in those of women with SPL (2.7%). The predominant epimutation was postzygotic hypomethylation of maternal alleles of imprinted genes (RPL, 5.0%; SPL, 2.1%; p < 0.01). The frequency of MLID was higher among miscarriages from women with RPL than among miscarriages from women with SPL (1.7% and 0.4%, respectively, p < 0.01). Variants in NLRP7 were detected only in miscarriages from women with RPL. An analysis of the parental origin of NLRP7 variants revealed heterozygous carriers in families with RPL who exhibited spontaneous abortions with MLIDs and compound heterozygosity for NLRP7 variants. CONCLUSION RPL is associated with NLRP7 variants that lead to germinal and postzygotic MLIDs that are incompatible with normal embryo development. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Elena A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia.
| | - Tatyana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | - Stanislav A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | - Oksana Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | - Anton V Markov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | | | - Nikolay A Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | - Alexey A Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | - Nikita A Kolesnikov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | - Vadim A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Ushaika str., 10, Tomsk, Russia
| |
Collapse
|