1
|
Saha A, Ganguly B. Exploiting the (-C-H···C-) Interaction to Design Cage-Functionalized Organic Superbases and Hyperbases: A Computational Study. ACS OMEGA 2023; 8:38546-38556. [PMID: 37867725 PMCID: PMC10586256 DOI: 10.1021/acsomega.3c05401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
A set of carbon center-based P-ylidesubstituting bases have been exploited computationally with pentacyclo[5.4.0.02,6.03,10.05.9]undecane (PCU) and pentacyclo [6.4.0.02,7.03,11.06,10] dodecane (PCD) scaffolds using the B3LYP-D3/6-311+G(d,p) level of theory. The proton affinities calculated in the gas phase are in the range of superbases and hyperbases. The Atomsin-Molecules and Natural Bond Orbital calculations reveal that the -C-H···C- interaction plays a substantial role in improving the basicity, and tuning the -C-H···C- interaction can enhance the basicity of such systems. The free activation energy for proton exchange for PCD and PCU scaffolds substituted with P-ylide is substantially low. The computed results reveal the strength and nature of such - C-H···C- interactions compared to the -N-H···N- hydrogen bonds. The isodesmic reactions suggest that the superbasicity achieved using these frameworks arises from a combination of several factors, such as the ring strain of the bases in their unprotonated form, steric repulsion, and the intramolecular -C-H···C- interaction.
Collapse
Affiliation(s)
- Anusuya Saha
- Computation
and Simulation Unit, Analytical and Environmental Science Division
and Centralized Instrument Facility, CSIR-Central
Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bishwajit Ganguly
- Computation
and Simulation Unit, Analytical and Environmental Science Division
and Centralized Instrument Facility, CSIR-Central
Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Misra S, Singh P, Mahata RN, Brandão P, Roy S, Mahapatra AK, Nanda J. Supramolecular Antiparallel β-Sheet Formation by Tetrapeptides Based on Amyloid Sequence. J Phys Chem B 2021; 125:4274-4285. [PMID: 33886330 DOI: 10.1021/acs.jpcb.0c10920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembly of short peptides has emerged as an interesting research field for a wide range of applications. Recently, several truncated fragments of long-chain peptides or proteins responsible for different neurodegenerative diseases were studied to understand whether they can mimic the property and function of native peptides or not. It was reported that such a kind of peptide adopts a β-sheet structure in the disease state. It was observed that aromatic amino acid-rich peptide fragments possess a high tendency to adopt a β-sheet conformation. In this article, we are first time reporting the crystal structure of two tetrapeptides: Boc-GAII-OMe (Peptide 1) and Boc-GGVV-OMe (Peptide 2), composed of aliphatic amino acids, and the sequences are similar to the Aβ-peptide fragments Aβ29-32 and Aβ37-40 , respectively. In the solid-state, they are self-assembled in an antiparallel β-sheet fashion. The peptide units are connected by the strong amide hydrogen-bonding (N-H···O) interactions. Apart from that, other noncovalent interactions are also present, which help to stabilize the cross-β-sheet arrangement. Interestingly, in the crystal structure of Peptide 1, noncovalent C···C interaction between the electron-deficient carbonyl carbon, and the electron-rich sp3-carbon atom is observed, which is quite rare in the literature. The calculated torsion angles for these peptides are lying in the β-sheet region of the Ramachandran plot. FT-IR studies also indicate the formation of an antiparallel β-sheet structure in the solid-state. Circular dichroism of the peptides in the aqueous solution also suggests the presence of predominantly β-sheet-like conformation in the aqueous solution. Under cross-polarized light, Congo Red stained both peptides showed green-gold color due to birefringence indicating their amyloidogenic nature. This result indicates that the short peptide composed of aliphatic amino acid is capable of forming a β-sheet structure in the absence of aromatic amino acid and also can mimic the function of the native amyloid peptide.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.-Botanic Garden, Howrah-711103, West Bengal, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics. University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Rabindra Nath Mahata
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.-Botanic Garden, Howrah-711103, West Bengal, India
| | - Paula Brandão
- Departamento de Química/CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Subhasish Roy
- Department of Chemistry, BITS-Pilani K. K. Birla Goa Campus, 433 Sancoale, Goa 403726, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.-Botanic Garden, Howrah-711103, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, P.O.-NBU campus, Darjeeling-734013, West Bengal, India
| |
Collapse
|
3
|
Two kinds of X H⋯C(sp 3 ) hydrogen bond formed by the methide anion: Syn- and anti- orientation of monomers. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Isaev AN. Hydrogen bonded С–H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s0036024416030183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Adhikari U, Scheiner S. Magnitude and Mechanism of Charge Enhancement of CH··O Hydrogen Bonds. J Phys Chem A 2013; 117:10551-62. [DOI: 10.1021/jp4081788] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Upendra Adhikari
- Department
of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department
of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|