1
|
Kiseleva MA, Churakov AV, Taydakov IV, Metlin MT, Kozyukhin SA, Bezzubov SI. Aggregation-induced emission of cyclometalated rhodium(III) and iridium(III) phenylpyridine complexes with ancillary 1,3-diketones. Dalton Trans 2023; 52:17861-17872. [PMID: 37975537 DOI: 10.1039/d3dt02651e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A joint structural and spectroscopic study of simple bis-cyclometataled rhodium(III) and iridium(III) complexes with 2-phenylpyridine and aromatic β-diketones (dibenzoylmethane, benzoylacetone, benzoyltrifluoroacetone, and 2-thenoyltrifluoroacetone) reveals an interplay between the solid-state emission efficiency and crystal packing peculiarities of the complexes. Although the prepared rhodium(III) cyclometalates are isostructural with iridium(III) analogues, different types of π-π interactions are responsible for the aggregation-induced emission (AIE) of the complexes depending on the metal ion. For iridium(III) complexes, pyridyl-pyridyl contacts are essential for AIE because they lower the energy of the emissive metal-to-ligand charge transfer state below that of the non-emissive state located at the ancillary ligand. Enabled by phenyl-pyridyl interactions partially blocking the population of non-emissive d-d states, solid-state phosphorescence enhancement is successfully achieved in a rhodium(III) complex with ancillary benzoyltrifluoroacetone, which is the first example of a rhodium complex exhibiting AIE.
Collapse
Affiliation(s)
- Marina A Kiseleva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
- Department of Chemistry, Lomonosov Moscow State University, Lenin's Hills 1, Moscow, 119991, Russia
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Ilya V Taydakov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
| | - Mikhail T Metlin
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
- Bauman Moscow State Technical University, 2-ya Baumanskaya Str. 5/1, Moscow, 105005, Russia
| | - Sergey A Kozyukhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| |
Collapse
|
2
|
Tatarin SV, Smirnov DE, Taydakov IV, Metlin MT, Emets VV, Bezzubov SI. Tailoring the π-system of benzimidazole ligands towards stable light-harvesting cyclometalated iridium(III) complexes. Dalton Trans 2023; 52:6435-6450. [PMID: 37092600 DOI: 10.1039/d3dt00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The synthesis, structure, optical and redox properties as well as photovoltaic studies of iridium(III) complexes with cyclometalated 2-arylbenzimidazoles decorated with various polyaromatic fragments and an ancillary aromatic β-diketone are reported. Despite the strong preference of the iridium(III) ion to form bis- or tris-cyclometalated complexes in which the metal participates in five-membered metallacycles, the cyclometalation of the benzimidazole ligands containing rigid π-extended systems yields dimeric complexes containing strained five- or six-membered metallacycles and allows for generating an extremely rare monocyclometalated complex. X-ray crystallography shows that the steric strain observed in the dimers is retained in heteroleptic diketonate complexes which is also corroborated by gas-phase DFT calculations. While emission maxima and redox potentials of the heteroleptic complexes exhibit just a moderate variation upon the change of the cyclometalated ligands, the extension of the π-system of the benzimidazole ligands give the complexes remarkable light absorption in the visible spectral range, which meets the requirements for application in dye-sensitized solar cells. At the titania photoanodes, these iridium dyes retain their optical properties and exhibit power conversion efficiencies under standard AM 1.5 G conditions comparable to those of other iridium-based sensitizers. These results demonstrate that the size and position of the π-extended fragment in cyclometalated ligands can modulate not only the electronic structure of the corresponding iridium(III) complexes, but also affect their composition, structure and reactivity that may find implications in future design of emerging iridium dyes, emitters and catalysts.
Collapse
Affiliation(s)
- Sergei V Tatarin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Daniil E Smirnov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Ilya V Taydakov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
| | - Mikhail T Metlin
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
- Bauman Moscow State Technical University, 2-ya Baumanskaya Str. 5/1, 105005, Moscow, Russia
| | - Victor V Emets
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| |
Collapse
|
3
|
A Panchromatic Cyclometalated Iridium Dye Based on 2-Thienyl-Perimidine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103201. [PMID: 35630677 PMCID: PMC9143831 DOI: 10.3390/molecules27103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Though 2-arylperimidines have never been used in iridium(III) chemistry, the present study on structural, electronic and optical properties of N-unsubstituted and N-methylated 2-(2-thienyl)perimidines, supported by DFT/TDDFT calculations, has shown that these ligands are promising candidates for construction of light-harvesting iridium(III) complexes. In contrast to N-H perimidine, the N-methylated ligand gave the expected cyclometalated μ-chloro-bridged iridium(III) dimer which was readily converted to a cationic heteroleptic complex with 4,4′-dicarboxy-2,2′-bipyridine. The resulting iridium(III) dye exhibited panchromatic absorption up to 1000 nm and was tested in a dye-sensitized solar cell.
Collapse
|
4
|
Durakov SA, Melnikov PV, Martsinkevich EM, Smirnova AA, Shamsiev RS, Flid VR. Solvent effect in palladium-catalyzed allylation of norbornadiene. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Tatarin SV, Kalle P, Taydakov IV, Varaksina EA, Korshunov VM, Bezzubov SI. Sterically hindered phenanthroimidazole ligands drive the structural flexibility and facile ligand exchange in cyclometalated iridium(III) complexes. Dalton Trans 2021; 50:6889-6900. [PMID: 33913992 DOI: 10.1039/d1dt00820j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of bis-cyclometalated iridium(iii) complexes with 2-arylphenanthroimidazole "antenna" ligands containing electron-donor or withdrawing substituents and a more flexible ancillary aromatic β-diketone bearing the "anchoring" carboxymethyl function has been prepared. Thorough X-ray study of the complexes revealed significant structural strains caused by bulky cyclometalated 2-arylphenanthroimidazoles resulting in dramatic distortions of the iridium octahedron and even in twist of the phenanthrene fragment. The crystal data were corroborated by gas-phase DFT calculations whereby the geometry of the complexes was distorted in the same way. While redox potentials, absorption and emission maxima of the complexes displayed expected change upon the variation of the electron-donating ability of the cyclometalated ligands, the complexes readily exchanged the bidentate ancillary ligand in the presence of a negligible amount of protons that was inspected in solution by UV-Vis spectroscopy. Moreover, after hydrolysis of the carboxymethyl group the resulting complexes readily react with the surface of titanium dioxide giving unique binuclear structures in which the deprotonated carboxy group of the coordinated β-diketonate binds the second bis-cyclometalated unit by forming a four-membered metallacycle. Though the enhanced reactivity of the complexes is contrary to the common idea of the high inertness of iridium(iii) compounds it can be seen as a consequence of the interplay between the steric hindrance induced by the ligands and the strong preference of the iridium(iii) ion for octahedral geometry. This study demonstrates that the use of bulky ligands provides access to light-harvesting iridium(iii) complexes with required extent of lability which may be promising as photocatalysts and biologically active molecules.
Collapse
Affiliation(s)
- Sergei V Tatarin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia. and Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russia
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia. and Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russia
| | - Ilya V Taydakov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia and G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow, 117997 Russian Federation
| | - Evgenia A Varaksina
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
| | - Vladislav M Korshunov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia and Bauman Moscow State Technical University, 2-ya Baumanskaya Str. 5/1, 105005, Moscow, Russia
| | - Stanislav I Bezzubov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia.
| |
Collapse
|
6
|
Nguyen Van Ha, Doan Thanh Dat. Ground and Excited State Electronic Structures of d8-Squared Planar Platinum(II) and Gold(III) Complexes Bearing Cyclometallated 2,6-Diphenylpyridine and Pyrene-Derived N-Heterocyclic Carbene. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Bezzubov SI, Zharinova IS, Khusyainova AA, Kiselev YM, Taydakov IV, Varaksina EA, Metlin MT, Tobohova AS, Korshunov VM, Kozyukhin SA, Dolzhenko VD. Aromatic β‐Diketone as a Novel Anchoring Ligand in Iridium(III) Complexes for Dye‐Sensitized Solar Cells. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stanislav I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninskii pr. 31 119991 Moscow Russia
| | - Irina S. Zharinova
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninskii pr. 31 119991 Moscow Russia
- Department of Chemistry Lomonosov Moscow State University Lenin's hills 1 119991 Moscow Russia
| | - Alfiya A. Khusyainova
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninskii pr. 31 119991 Moscow Russia
- Department of Chemistry Lomonosov Moscow State University Lenin's hills 1 119991 Moscow Russia
| | - Yuri M. Kiselev
- Department of Chemistry Lomonosov Moscow State University Lenin's hills 1 119991 Moscow Russia
| | - Ilya V. Taydakov
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
| | - Evgenia A. Varaksina
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
| | - Mikhail T. Metlin
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
| | - Aiyyna S. Tobohova
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
- Moscow Institute of Physics and Technology State University Institutsky per. 9 141700 Dolgoprudny Moscow Region Russia
| | - Vladislav M. Korshunov
- P.N. Lebedev Physical Institute Russian Academy of Sciences 53 Leninsky Prospect 119991 Moscow Russia
- Bauman Moscow State Technical University 2‐ya Baumanskaya Str. 5/1 105005 Moscow Russia
| | - Sergei A. Kozyukhin
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninskii pr. 31 119991 Moscow Russia
| | - Vladimir D. Dolzhenko
- Department of Chemistry Lomonosov Moscow State University Lenin's hills 1 119991 Moscow Russia
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russia
| |
Collapse
|
8
|
Sysoev SV, Kuzin TM, Zelenina LN, Zherikova KV, Gelfond NV. Thermodynamic Characterization of Ruthenium β-Diketonate Complex Ru(thd)3 as a Precursor for the CVD Preparation of Coatings. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620050241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Solomatina AI, Kuznetsov KM, Gurzhiy VV, Pavlovskiy VV, Porsev VV, Evarestov RA, Tunik SP. Luminescent organic dyes containing a phenanthro[9,10-D]imidazole core and [Ir(N^C)(N^N)] + complexes based on the cyclometalating and diimine ligands of this type. Dalton Trans 2020; 49:6751-6763. [PMID: 32373874 DOI: 10.1039/d0dt00568a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A family of diimine (N^N) and cyclometalating (N^C) ligands based on a phenanthro-imidazole aromatic system: 2-pyridyl-1H-phenanthro[9,10-d]imidazole (N^N); 2-R-1-phenyl-1H-phenanthro[9,10-d]imidazole, R = phenyl (N^C4), 3-iodophenyl (N^C5) and 4-nitrophenyl (N^C6) were prepared. It was found that N^C4 and N^C5 show π-π* fluorescence typical of aromatic systems of this sort, whereas the donor-acceptor architecture of N^C6 leads to strong emission solvatochromism and acidochromism, indicating the charge transfer character of the fluorescence observed. Six iridium(iii) complexes (1-6) [Ir(N^C#)2(N^N)]+, where # = 1-6 and N^C1 = 2-phenylpyridine, N^C2 = 2-(benzo[b]thiophen-2-yl)pyridine, and N^C3 = methyl 2-phenylquinoline-4-carboxylate, were also synthesized and characterized. The complexes obtained display moderate to bright phosphorescence with quantum yields up to 46% in degassed solution. The photophysical characteristics of 1-6 were studied in detail. DFT and TD DFT calculations were used for the assignment of electronic transitions responsible for the absorption and emission of these compounds. The variations in the cyclometalating ligand structure give rise to rich photophysics of the complexes obtained. It was found that the orbitals of both N^C and N^N ligands make a major contribution to the formation of emissive excited states and a delicate balance between the energy of the ligands' frontier orbitals determines the emission character.
Collapse
Affiliation(s)
- Anastasia I Solomatina
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Kirill M Kuznetsov
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Vladislav V Gurzhiy
- St. Petersburg State University, Institute of Earth Sciences, University emb. 7/9, 199034 Saint Petersburg, Russia
| | - Vladimir V Pavlovskiy
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Vitaly V Porsev
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Robert A Evarestov
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Sergey P Tunik
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| |
Collapse
|