Design of Extractants for F-Block Elements in a Series of (2-(Diphenylphosphoryl)methoxyphenyl)diphenylphosphine Oxide Derivatives: Synthesis, Quantum-Chemical, and Extraction Studies.
Molecules 2021;
26:molecules26082217. [PMID:
33921392 PMCID:
PMC8069430 DOI:
10.3390/molecules26082217]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
With the aim to find new efficient extractants for recovery of f-block elements from processing wastes of different origin, we have compared a series of phosphoryl-containing podands, including (2-(diphenylphosphorylmethoxy)phenyl)diphenylphosphine oxide 1 and its analogues 5–7, where the ArP(O)Ph2 group of phosphine oxide type is replaced by phosphonic fragments. Quantum-chemical modelling of the structures of phosphoryl-containing podands 1 and 5–7 has been performed, which was later confirmed by the data of X-ray diffraction. The features of extraction of nitric acid, as well as U(VI), Th(IV), Nd(III), and Ho(III) with compounds 1 and 5–7 from nitric acid media into 1,2-dichloroethane have been studied. The compositions of extracted complexes have been determined.
Collapse