1
|
Kociołek-Balawejder E, Winiarska K, Winiarski J, Mucha I. Transformation of Cu 2O into Metallic Copper within Matrix of Carboxylic Cation Exchangers: Synthesis and Thermogravimetric Studies of Novel Composite Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3893. [PMID: 39203071 PMCID: PMC11355710 DOI: 10.3390/ma17163893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
In order to systematize and expand knowledge about copper-containing composite materials as hybrid ion exchangers, in this study, fine metallic copper particles were dispersed within the matrix of a carboxyl cation exchanger (CCE) with a macroporous and gel-type structure thanks to the reduction of Cu2O particles precipitated within the matrix earlier. It was possible to introduce as much as 22.0 wt% Cu0 into a gel-type polymeric carrier (G/H#Cu) when an ascorbic acid solution was used to act as a reducer of Cu2O and a reagent transforming the functional groups from Na+ into the H+ form. The extremely high shrinkage of the porous skeleton containing -COOH groups (in a wet and also dry state) and its limited affinity for water protected the copper from oxidation without the use of special conditions. When macroporous CCE was used as a host material, the composite material (M/H#Cu) contained 18.5 wt% Cu, and copper particles were identified inside the resin beads, but not on their surface where Cu2+ ions appeared during drying. Thermal analysis in an air atmosphere and under N2 showed that dispersing metallic copper within the resin matrix accelerated its decomposition in both media, whereby M/H#Cu decomposed faster than G/H#Cu. It was found that G/H#Cu contained 6.0% bounded water, less than M/H#Cu (7.5%), and that the solid residue after combustion of G/H#Cu and M/H#Cu was CuO (26.28% and 22.80%), while after pyrolysis the solid residue (39.35% and 26.23%) was a mixture of carbon (50%) and metallic copper (50%). The presented composite materials thanks to the antimicrobial, catalytic, reducing, deoxygenating and hydrophobic properties of metallic copper can be used for point-of-use and column water/wastewater treatment systems.
Collapse
Affiliation(s)
- Elżbieta Kociołek-Balawejder
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland;
| | - Katarzyna Winiarska
- Department of Inorganic Chemistry, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland;
| | - Juliusz Winiarski
- Groups of Surface Technology, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Igor Mucha
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211 A, 50-556 Wrocław, Poland
| |
Collapse
|
2
|
Kociołek-Balawejder E, Stanisławska E, Mucha I, Ociński D, Jacukowicz-Sobala I. Multifunctional Composite Materials Based on Anion Exchangers Modified with Copper Compounds-A Review of Their Synthesis Methods, Characteristics and Applications. Polymers (Basel) 2023; 15:3606. [PMID: 37688232 PMCID: PMC10490266 DOI: 10.3390/polym15173606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
As copper and its compounds are of fundamental importance for the development of innovative materials, the synthesis of composites intended for water purification was undertaken in which submicron copper containing particles were dispersed within the matrix of a strongly basic anion exchanger, with a macroporous and gel-like structure. Due to their trimethylammonium functional groups, the host materials alone exhibited an affinity to anionic water contaminants and antimicrobial properties. The introduction of such particles as CuO, Cu2O, metallic Cu, CuO/FeO(OH), Cu4O3, Cu(OH)2, Cu4(OH)6SO4, Cu2(OH)3Cl increased these properties and demonstrated new properties. The composites were obtained unconventionally, in ambient conditions, using eco-friendly reagents. Alternative synthesis methods were compared and optimized, as a result of which a new group of hybrid ion exchangers was created (HIXs) containing 3.5-12.5 wt% of Cu. As the arrangement of the inorganic phase in the resin matrix was atypical, i.e., close to the surface of the beads, the obtained HIXs exhibited excellent kinetic properties in the process of oxidation and adsorption of As(III), as well as catalytic properties for the synthesis of triazoles via click reaction, and also antimicrobial properties in relation to Gram-positive Enterococcus faecalis and Gram-negative Pseudomonas aeruginosa and Escherichia coli, preventing biofilm formation. Using thermogravimetry, the effect of the inorganic phase on decomposition of the polymeric phase was evaluated for the first time and comprehensively, confirming the relationship and finding numerous regularities. It was also found that, depending on the oxidation state (CuO, Cu2O, Cu), copper-containing particles affected the textural properties of the polymeric phase endowing a tighter structure, limiting the porosity and reducing the affinity for water.
Collapse
Affiliation(s)
- Elżbieta Kociołek-Balawejder
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Ewa Stanisławska
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Igor Mucha
- Department of Basic Chemical Sciences, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Daniel Ociński
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Irena Jacukowicz-Sobala
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| |
Collapse
|
3
|
Kociołek-Balawejder E, Stanisławska E, Jacukowicz-Sobala I, Mucha I. Copper Rich Composite Materials Based on Carboxylic Cation Exchangers and Their Thermal Transformation. Polymers (Basel) 2021; 13:3199. [PMID: 34578100 PMCID: PMC8469408 DOI: 10.3390/polym13183199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
The effect of a cupric deposit (Cu2+, CuO) on the thermal decomposition of carboxylic cation exchangers (CCEs) is not known, and such studies may have practical significance. CCEs have a very high ion exchange capacity, so an exceptionally large amount of CuO (which is a catalyst) can be precipitated inside them. Two CCEs, macroreticular (Amberlite IRC50) and gel-like (Amberlite IRC86), served as a polymeric support to obtain copper-rich hybrid ion exchangers. Composites with CuO particles inside a polyacrylic matrix (up to 35.0 wt% Cu) were obtained. Thermal analyses under air and under N2 were performed for CCEs in the H+ and Cu2+ form with and without a CuO deposit. The results of sixteen experiments are discussed based on the TG/DTG curves and XRD patterns of the solid residues. Under air, the cupric deposit shifted the particular transformations and the ultimate polymeric matter decomposition (combustion) toward lower temperatures (even about 100-150 °C). Under N2, the reduction of the cupric deposit to metallic copper took place. Unique composite materials enriched in carbonaceous matter were obtained, as the products of polymeric matrix decomposition (free radicals and hydrogen) created an additional amount of carbon char due to the utilization of a certain amount of hydrogen to reduce Cu (II) to Cu0.
Collapse
Affiliation(s)
- Elżbieta Kociołek-Balawejder
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (I.J.-S.)
| | - Ewa Stanisławska
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (I.J.-S.)
| | - Irena Jacukowicz-Sobala
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (I.J.-S.)
| | - Igor Mucha
- Department of Analytical Chemistry, Wroclaw Medical University, 50-556 Wrocław, Poland;
| |
Collapse
|
4
|
Jacukowicz-Sobala I, Stanisławska E, Baszczuk A, Jasiorski M, Kociołek-Balawejder E. Size-Controlled Transformation of Cu 2O into Zero Valent Copper within the Matrix of Anion Exchangers via Green Chemical Reduction. Polymers (Basel) 2020; 12:E2629. [PMID: 33182309 PMCID: PMC7695298 DOI: 10.3390/polym12112629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/17/2023] Open
Abstract
Composite materials containing zero valent copper (ZVC) dispersed in the matrix of two commercially available strongly basic anion exchangers with a macroreticular (Amberlite IRA 900Cl) and gel-like (Amberlite IRA 402OH) structure were obtained. Cu0 particles appeared in the resin phase as the product of the reduction of the precursor, i.e., copper oxide(I) particles previously deposited in the two supporting materials. As a result of a one-step transformation of preformed Cu2O particles as templates conducted using green reductant ascorbic acid and under mild conditions, macroporous and gel-type hybrid products containing ZVC were obtained with a total copper content of 7.7 and 5.3 wt%, respectively. X-ray diffraction and FTIR spectroscopy confirmed the successful transformation of the starting oxide particles into a metallic deposit. A scanning electron microscopy study showed that the morphology of the deposit is mainly influenced by the type of matrix exchanger. In turn, the drying steps were crucial to its porosity and mechanical resistance. Because both the shape and size of copper particles and the internal structure of the supporting solid materials can have a decisive impact on the potential applications of the obtained materials, the results presented here reveal a great possibility for the design and synthesis of functional nanocrystalline solids.
Collapse
Affiliation(s)
- Irena Jacukowicz-Sobala
- Department of Industrial Chemistry, Wrocław University of Economics and Business, ul. Komandorska 118/120, 53-345 Wrocław, Poland; (E.S.); (E.K.-B.)
| | - Ewa Stanisławska
- Department of Industrial Chemistry, Wrocław University of Economics and Business, ul. Komandorska 118/120, 53-345 Wrocław, Poland; (E.S.); (E.K.-B.)
| | - Agnieszka Baszczuk
- Department of Mechanics, Materials Science and Engineering, Wrocław University of Science and Technology, ul. Smoluchowskiego 25, 50-370 Wrocław, Poland; (A.B.); (M.J.)
| | - Marek Jasiorski
- Department of Mechanics, Materials Science and Engineering, Wrocław University of Science and Technology, ul. Smoluchowskiego 25, 50-370 Wrocław, Poland; (A.B.); (M.J.)
| | - Elżbieta Kociołek-Balawejder
- Department of Industrial Chemistry, Wrocław University of Economics and Business, ul. Komandorska 118/120, 53-345 Wrocław, Poland; (E.S.); (E.K.-B.)
| |
Collapse
|
5
|
Pismenskaya N, Sarapulova V, Klevtsova A, Mikhaylin S, Bazinet L. Adsorption of Anthocyanins by Cation and Anion Exchange Resins with Aromatic and Aliphatic Polymer Matrices. Int J Mol Sci 2020; 21:ijms21217874. [PMID: 33114195 PMCID: PMC7660631 DOI: 10.3390/ijms21217874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
This study examines the mechanisms of adsorption of anthocyanins from model aqueous solutions at pH values of 3, 6, and 9 by ion-exchange resins making the main component of heterogeneous ion-exchange membranes. This is the first report demonstrating that the pH of the internal solution of a KU-2-8 aromatic cation-exchange resin is 2-3 units lower than the pH of the external bathing anthocyanin-containing solution, and the pH of the internal solution of some anion-exchange resins with an aromatic (AV-17-8, AV-17-2P) or aliphatic (EDE-10P) matrix is 2-4 units higher than the pH of the external solution. This pH shift is caused by the Donnan exclusion of hydroxyl ions (in the KU-2-8 resin) or protons (in the AV-17-8, AV-17-2P, and EDE-10P resins). The most significant pH shift is observed for the EDE-10P resin, which has the highest ion-exchange capacity causing the highest Donnan exclusion. Due to the pH shift, the electric charge of anthocyanin inside an ion-exchange resin differs from its charge in the external solution. At pH 6, the external solution contains uncharged anthocyanin molecules. However, in the AV-17-8 and AV-17-2P resins, the anthocyanins are present as singly charged anions, while in the EDE-10P resin, they are in the form of doubly charged anions. Due to the electrostatic interactions of these anions with the positively charged fixed groups of anion-exchange resins, the adsorption capacities of AV-17-8, AV-17-2P, and EDE-10P were higher than expected. It was established that the electrostatic interactions of anthocyanins with the charged fixed groups increase the adsorption capacity of the aromatic resin by a factor of 1.8-2.5 compared to the adsorption caused by the π-π (stacking) interactions. These results provide new insights into the fouling mechanism of ion-exchange materials by polyphenols; they can help develop strategies for membrane cleaning and for extracting anthocyanins from juices and wine using ion-exchange resins and membranes.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (A.K.)
- Correspondence: ; Tel.: +7-918-48-91-292
| | - Veronika Sarapulova
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (A.K.)
| | - Anastasia Klevtsova
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (A.K.)
| | - Sergey Mikhaylin
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laboratory of Food Processing and ElectroMembrane Process (LTAPEM), University Laval, Québec, QC G1V, Canada; (S.M.); (L.B.)
| | - Laurent Bazinet
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laboratory of Food Processing and ElectroMembrane Process (LTAPEM), University Laval, Québec, QC G1V, Canada; (S.M.); (L.B.)
| |
Collapse
|
6
|
Sarapulova VV, Klevtsova AV, Pismenskaya ND. Electrostatic Interactions of Ion-Exchange Materials with Anthocyanins in the Processes of Their Sorption and Electrodialysis Extraction from Liquid Media. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620040101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|