1
|
Qiu Y, Huang M, Sun X, Wang Y, Deng K, Liu Z, Xie Y, Zhao P, Fei J. In-situ synthesized MgIn 2S 4/CdWO 4 type-II heterojunction as a light-driven photoelectrochemical sensor for ultrasensitive detection of catechol in environmental water samples. Talanta 2024; 276:126206. [PMID: 38749163 DOI: 10.1016/j.talanta.2024.126206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024]
Abstract
As an essential chemical intermediate, catechol (CC) residues may have adverse effects on human health. Herein, an effective and facile photoelectrochemical sensor platform based on MgIn2S4/CdWO4 composite is constructed for monitoring CC. MgIn2S4 increases light absorption range and activity, while CdWO4 enhances photoelectronic stability, and the type-II heterojunction formed can significantly enhance photocurrent response. Due to the autoxidation process, CC is converted into oligomeric products, which increase the spatial site resistance and attenuate the overall photocurrent response. It is worth noting that the cauliflower-like structure of MgIn2S4 can provide a large specific surface area, and the presence of Mg2+ promotes autoxidation, thus providing a suitable condition for detecting CC. Under optimal conditions, the MgIn2S4/CdWO4/GCE photoelectrochemical sensor has a prominent linear relationship in the range of CC concentration from 2 nM to 7 μM, with a limit of detection of 0.27 nM. With satisfactory selectivity, excellent stability, and remarkable reproducibility, this sensor provides a crucial reference value for effectively and rapidly detecting pollutants in environmental water samples.
Collapse
Affiliation(s)
- Yuhui Qiu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Minghui Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xiaoqian Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Kunxiang Deng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
2
|
Kinetics and mechanism of caffeic acid autoxidation in weakly alkaline aqueous solutions in the presence of Mg(II) ions. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
The influence of Mg(II) and Ca(II) ions on the autoxidation of 4-methylcatechol in weakly alkaline aqueous solutions. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|