1
|
Ebenso EE, Verma C, Olasunkanmi LO, Akpan ED, Verma DK, Lgaz H, Guo L, Kaya S, Quraishi MA. Molecular modelling of compounds used for corrosion inhibition studies: a review. Phys Chem Chem Phys 2021; 23:19987-20027. [PMID: 34254097 DOI: 10.1039/d1cp00244a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular modelling of organic compounds using computational software has emerged as a powerful approach for theoretical determination of the corrosion inhibition potential of organic compounds. Some of the common techniques involved in the theoretical studies of corrosion inhibition potential and mechanisms include density functional theory (DFT), molecular dynamics (MD) and Monte Carlo (MC) simulations, and artificial neural network (ANN) and quantitative structure-activity relationship (QSAR) modeling. Using computational modelling, the chemical reactivity and corrosion inhibition activities of organic compounds can be explained. The modelling can be regarded as a time-saving and eco-friendly approach for screening organic compounds for corrosion inhibition potential before their wet laboratory synthesis would be carried out. Another advantage of computational modelling is that molecular sites responsible for interactions with metallic surfaces (active sites or adsorption sites) and the orientation of organic compounds can be easily predicted. Using different theoretical descriptors/parameters, the inhibition effectiveness and nature of the metal-inhibitor interactions can also be predicted. The present review article is a collection of major advancements in the field of computational modelling for the design and testing of the corrosion inhibition effectiveness of organic corrosion inhibitors.
Collapse
Affiliation(s)
- Eno E Ebenso
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa.
| | - Chandrabhan Verma
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Lukman O Olasunkanmi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
| | - Ekemini D Akpan
- Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046, Mmabatho 2735, South Africa
| | - Dakeshwar Kumar Verma
- Department of Chemistry, Govt. Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh 491441, India
| | - Hassane Lgaz
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, Seoul 05029, South Korea
| | - Lei Guo
- School of Materials and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Savas Kaya
- Faculty of Science, Department of Chemistry, Cumhuriyet University, 58140, Sivas, Turkey
| | - M A Quraishi
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
An Overview of Molecular Dynamic Simulation for Corrosion Inhibition of Ferrous Metals. METALS 2020. [DOI: 10.3390/met11010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Molecular dynamics (MD) simulation is a powerful tool to study the molecular level working mechanism of corrosion inhibitors in mitigating corrosion. In the past decades, MD simulation has emerged as an instrument to investigate the interactions at the interface between the inhibitor molecule and the metal surface. Combined with experimental measurement, theoretical examination from MD simulation delivers useful information on the adsorption ability and orientation of the molecule on the surface. It relates the microscopic characteristics to the macroscopic properties which enables researchers to develop high performance inhibitors. Although there has been vast growth in the number of studies that use molecular dynamic evaluation, there is still lack of comprehensive review specifically for corrosion inhibition of organic inhibitors on ferrous metal in acidic solution. Much uncertainty still exists on the approaches and steps in performing MD simulation for corrosion system. This paper reviews the basic principle of MD simulation along with methods, selection of parameters, expected result such as adsorption energy, binding energy and inhibitor orientation, and recent publications in corrosion inhibition studies.
Collapse
|