1
|
Andrade del Olmo J, Mikeš P, Asatiani N, Alonso JM, Sáez Martínez V, Pérez González R. Alternating Current Electrospinning of Polycaprolactone/Chitosan Nanofibers for Wound Healing Applications. Polymers (Basel) 2024; 16:1333. [PMID: 38794525 PMCID: PMC11125242 DOI: 10.3390/polym16101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Traditional wound dressings have not been able to satisfy the needs of the regenerative medicine biomedical area. With the aim of improving tissue regeneration, nanofiber-based wound dressings fabricated by electrospinning (ES) processes have emerged as a powerful approach. Nowadays, nanofiber-based bioactive dressings are mainly developed with a combination of natural and synthetic polymers, such as polycaprolactone (PCL) and chitosan (CHI). Accordingly, herein, PCL/CHI nanofibers have been developed with varying PCL:CHI weight ratios (9:1, 8:2 and 7:3) or CHI viscosities (20, 100 and 600 mPa·s) using a novel alternating current ES (ACES) process. Such nanofibers were thoroughly characterized by determining physicochemical and nanomechanical properties, along with wettability, absorption capacity and hydrolytic plus enzymatic stability. Furthermore, PCL/CHI nanofiber biological safety was validated in terms of cytocompatibility and hemocompatibility (hemolysis < 2%), in addition to a notable antibacterial performance (bacterial reductions of 99.90% for S. aureus and 99.91% for P. aeruginosa). Lastly, the enhanced wound healing activity of PCL/CHI nanofibers was confirmed thanks to their ability to remarkably promote cell proliferation, which make them ideal candidates for long-term applications such as wound dressings.
Collapse
Affiliation(s)
- Jon Andrade del Olmo
- i+Med S. Coop., Alava Technology Park, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (V.S.M.); (R.P.G.)
| | - Petr Mikeš
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Nikifor Asatiani
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - José María Alonso
- i+Med S. Coop., Alava Technology Park, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (V.S.M.); (R.P.G.)
| | - Virginia Sáez Martínez
- i+Med S. Coop., Alava Technology Park, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (V.S.M.); (R.P.G.)
| | - Raúl Pérez González
- i+Med S. Coop., Alava Technology Park, Albert Einstein 15, nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (V.S.M.); (R.P.G.)
| |
Collapse
|
2
|
Ghasemvand F, Kabiri M, Hassan-Zadeh V, Simchi A. Chitosan, polyethylene oxide/polycaprolactone electrospun core/shell nanofibrous mat containing rosuvastatin as a novel drug delivery system for enhancing human mesenchymal stem cell osteogenesis. Front Mol Biosci 2023; 10:1220357. [PMID: 37520322 PMCID: PMC10374260 DOI: 10.3389/fmolb.2023.1220357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Due to the potential positive effects of rosuvastatin (RSV) on human mesenchymal stem cells (MSCs) osteogenesis and new bone regeneration, it is crucial to develop a suitable carrier that can effectively control the release profile of RSV. The primary objective of this study was to introduce a novel drug delivery system based on core/shell nanofibrous structures, enabling a sustained release of RSV. Methods: To achieve this, coaxial electrospinning was employed to fabricate chitosan (CS)+polyethylene oxide (PEO)/polycaprolactone (PCL) nanofibrous mats, wherein RSV was incorporated within the core of nanofibers. By optimizing the relevant parameters of the electrospinning process, the mats' surface was further modified using plasma treatment. The fibers' shape, structure, and thermal stability were characterized. The wettability, and degradation properties of the fabricated mats were also examined. In vitro studies were conducted to examine the release behavior of RSV. Additionally, the capability of MSCs to survive and differentiate into osteocytes when cultured on nanofibers containing RSV was evaluated. Results: Results demonstrated the successful fabrication of CS + PEO + RSV/PCL core/shell mats with a core diameter of approximately 370 nm and a shell thickness of around 70 nm under optimized conditions. Plasma treatment was found to enhance the wettability and drug-release behavior of the mats. The nanofibrous structure, serving as a carrier for RSV, exhibited increased proliferation of MSCs and enhanced osteogenic differentiation. Conclusion: Therefore, it can be concluded that CS + PEO + RSV/PCL core/shell nanofibrous structure can be utilized as a sustained-release platform for RSV over an extended period, making it a promising candidate for guided bone regeneration.
Collapse
Affiliation(s)
- Fariba Ghasemvand
- Department of Cell and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Vahideh Hassan-Zadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Kharat Z, Amiri Goushki M, Sarvian N, Asad S, Dehghan MM, Kabiri M. Chitosan/PEO nanofibers containing Calendula officinalis extract: Preparation, characterization, in vitro and in vivo evaluation for wound healing applications. Int J Pharm 2021; 609:121132. [PMID: 34563618 DOI: 10.1016/j.ijpharm.2021.121132] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Wound healing is a complex pathophysiological process, highlighting the importance of effective and thorough wound care along with the prevention of wound infection, a major barrier that can slow down or even disrupt the healing process. To date, there are plenty of herbal plants well known and historically supernatural, showing profound wound healing effects. Application of such herbal extracts/ingredients in electrospun nanofiber platforms has shown promising outcomes in improving wound healing process. Based on these facts, we loaded Calendula officinalis extract (CO) in chitosan/polyethylene oxide scaffolds (CS/PEO) by electrospinning. Using SEM, morphology of electrospun scaffolds showed a narrow range of fiber diameter, around 143--252 nm, with uniform and bead-free appearance. FT-IR spectroscopy confirmed the presence of CO extract in nanofibrous scaffolds. Of importance, incorporation of CO extract improved mechanical properties of CS/PEO nanofibers. A 1602 cP reduction in viscosity and a 0.892 ms/cm increase in the conductivity of the solution was observed after addition of the CO extract. CO extract showed strong antibacterial properties with 96% and 94% reduction in Gram positive and Gram negative bacteria, respectively. In vitro studies with fibroblast cells confirmed enhanced proliferation, growth and attachment of the cells. The in vivo and histological analysis of rat wounds, revealed excellent wound healing ability of CS/PEO/CO dressings (87.5 % wound closure after 14 days) via improving collagen synthesis, re-epithelization and remodeling of the tissue. In sum, our findings show that CS/PEO/CO scaffolds can be used as a promising dressing for the treatment of skin wounds.
Collapse
Affiliation(s)
- Zahra Kharat
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehdi Amiri Goushki
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Nazanin Sarvian
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| |
Collapse
|
4
|
Haghshenas V, Sariri R, Naderi Sohi A, Nazari H. Encapsulation of Docetaxel into Diblock Polymeric Polymersome as a Nanodrug. ChemistrySelect 2020. [DOI: 10.1002/slct.202001251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Venus Haghshenas
- Department of Biology, Faculty of ScienceUniversity of Guilan Rasht Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of ScienceUniversity of Guilan Rasht Iran
| | | | - Hojjatollah Nazari
- Research Center of Advanced Technologies in Cardiovascular MedicineTehran Heart Center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
5
|
Singh YP, Dasgupta S, Nayar S, Bhaskar R. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:781-803. [PMID: 31958253 DOI: 10.1080/09205063.2020.1718824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chitosan (CS) nanofibers were electrospun from aqueous chitosan solution using concentrated acetic acid solution as a solvent. Polyethylene oxide (PEO) with varying weight content from 10- 60 wt% was mixed with chitosan solution that acted as a plasticizer to improve spinability of the prepared chitosan solution. With the increase in PEO content from 10-50 wt% the viscosity of the resultant CS/PEO solution was decreased from 0.938 Pa-s to 0.272 Pa-s, whereas higher the concentration of acetic acid lower was the surface tension of resultant chitosan solution. It was found beadless nanofibrous chitosan mat was obtained not less than 85% acetic acid concentration, 50 wt% PEO and at 0.2 wt% NaCl and 5 wt% total polymer concentration. From field emission scanning electron microscopy (FESEM) investigation, it was observed that chitosan fibers with an average diameter of 149 nm were produced at an applied voltage of 22.5 KV, while that varied between 17.5- 25 KV. On the other hand, a minimum of 110 nm of average diameter chitosan nanofiber was obtained at a needle tip to rotor collector distance of 15 cm by the method of electrospining. In terms of solution flow rate, 0.4 mL/h was found to be optimum in obtaining defect-free electrospun fiber with lower average diameter. As a whole, smooth and uniform chitosan nanofibers were obtained from 50/50 CS/PEO solution prepared by using 90% acetic acid and electrospun at 20 kV applied voltage, 15 cm needle tip-to- rotor collector distance with 0.2 mm inner diameter needle and 0.4 mL/h feeding rate. After crosslinking with 1 wt% glutaraldehyde (GTA), the ultimate tensile strength and Young's modulus of chitosan scaffold increased upto 9.47 MPa and 147.75 MPa respectively. From MTT assay and alkaline phosphatase expression analysis upto 11 days of cell culture period it was evident that thus prepared electrospun CS scaffolds supported MG 63 cell proliferation and its differentiation into mature osteoblast.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, India
| | - Suprabha Nayar
- Materials Science and Technology Division, National Metallurgical Laboratory, Jamshedpur, India
| | - Rakesh Bhaskar
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
6
|
Immobilized Laminin-derived Peptide Can Enhance Expression of Stemness Markers in Mesenchymal Stem Cells. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0118-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|