1
|
Faris BK, Hassan AA, Aziz SB, Brza MA, Abdullah AM, Abdalrahman AA, Abu Ali OA, Saleh DI. Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes. MATERIALS 2021; 15:ma15010170. [PMID: 35009315 PMCID: PMC8746227 DOI: 10.3390/ma15010170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022]
Abstract
The polymer electrolyte system of methylcellulose (MC) doped with various sodium bromide (NaBr) salt concentrations is prepared in this study using the solution cast technique. FTIR and XRD were used to identify the structural changes in solid films. Sharp crystalline peaks appeared at the XRD pattern at 40 and 50 wt.% of NaBr salt. The electrical impedance spectroscopy (EIS) study illustrates that the loading of NaBr increases the electrolyte conductivity at room temperature. The DC conductivity of 6.71 × 10−6 S/cm is obtained for the highest conducting electrolyte. The EIS data are fitted with the electrical equivalent circuit (EEC) to determine the impedance parameters of each film. The EEC modeling helps determine the circuit elements, which is decisive from the engineering perspective. The DC conductivity tendency is further established by dielectric analysis. The EIS spectra analysis shows a decrease in bulk resistance, demonstrating free ion carriers and conductivity boost. The dielectric property and relaxation time confirmed the non-Debye behavior of the electrolyte system. An incomplete semicircle further confirms this behavior model in the Argand plot. The distribution of relaxation times is related to the presence of conducting ions in an amorphous structure. Dielectric properties are improved with the addition of NaBr salt. A high value of a dielectric constant is seen at the low frequency region.
Collapse
Affiliation(s)
- Balen K. Faris
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (B.K.F.); (A.A.H.); (A.A.A.)
| | - Ary A. Hassan
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (B.K.F.); (A.A.H.); (A.A.A.)
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (B.K.F.); (A.A.H.); (A.A.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence:
| | - Mohamad A. Brza
- Medical Physics Department, College of Medicals & Applied Science, Charmo University, Chamchamal 46023, Sulaimani, Iraq; (M.A.B.); (A.M.A.)
| | - Aziz M. Abdullah
- Medical Physics Department, College of Medicals & Applied Science, Charmo University, Chamchamal 46023, Sulaimani, Iraq; (M.A.B.); (A.M.A.)
| | - Ari A. Abdalrahman
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (B.K.F.); (A.A.H.); (A.A.A.)
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (O.A.A.A.); (D.I.S.)
| | - Dalia I. Saleh
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (O.A.A.A.); (D.I.S.)
| |
Collapse
|
2
|
Raghavan A, Ghosh S. Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect 2021. [DOI: 10.1002/slct.202103291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sutapa Ghosh
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
3
|
Asnawi AS, Aziz SB, Brevik I, Brza MA, Yusof YM, Alshehri SM, Ahamad T, Kadir MFZ. The Study of Plasticized Sodium Ion Conducting Polymer Blend Electrolyte Membranes Based on Chitosan/Dextran Biopolymers: Ion Transport, Structural, Morphological and Potential Stability. Polymers (Basel) 2021; 13:polym13030383. [PMID: 33530553 PMCID: PMC7865308 DOI: 10.3390/polym13030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 × 10−5 S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O–H, C–H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (υas(SO3)) and symmetric vibration (υs(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (tion) and electron (te) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The tion value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.
Collapse
Affiliation(s)
- Ahmad S.F.M. Asnawi
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah, Malacca 78000, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Shujahadeen B. Aziz
- Hameedmajid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
- Correspondence: (S.B.A.); (I.B.)
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- Correspondence: (S.B.A.); (I.B.)
| | - Mohamad A. Brza
- Hameedmajid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Yuhanees M. Yusof
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah, Malacca 78000, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Saad M. Alshehri
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.A.); (T.A.)
| | - Tansir Ahamad
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.A.); (T.A.)
| | - M. F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|