1
|
Towijit U, Songruk N, Lindblad P, Incharoensakdi A, Jantaro S. Co-overexpression of native phospholipid-biosynthetic genes plsX and plsC enhances lipid production in Synechocystis sp. PCC 6803. Sci Rep 2018; 8:13510. [PMID: 30201972 PMCID: PMC6131169 DOI: 10.1038/s41598-018-31789-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
The overexpression of native plsX and plsC genes involving in fatty acid/phospholipid synthesis first timely-reported the significantly enhanced lipid contents in Synechocystis sp. PCC 6803. Growth rate, intracellular pigment contents including chlorophyll a and carotenoids, and oxygen evolution rate of all overexpressing (OX) strains were normally similar as wild type. For fatty acid compositions, saturated fatty acid, in particular palmitic acid (16:0) was dominantly increased in OX strains whereas slight increases of unsaturated fatty acids were observed, specifically linoleic acid (18:2) and alpha-linolenic acid (18:3). The plsC/plsX-overexpressing (OX + XC) strain produced high lipid content of about 24.3%w/dcw under normal condition and was further enhanced up to 39.1%w/dcw by acetate induction. This OX + XC engineered strain was capable of decreasing phaA transcript level which related to poly-3-hydroxybutyrate (PHB) synthesis under acetate treatment. Moreover, the expression level of gene transcripts revealed that the plsX- and plsC/plsX-overexpression strains had also increased accA transcript amounts which involved in the irreversible carboxylation of acetyl-CoA to malonyl-CoA. Altogether, these overexpressing strains significantly augmented higher lipid contents when compared to wild type by partly overcoming the limitation of lipid production.
Collapse
Affiliation(s)
- Umaporn Towijit
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nutchaya Songruk
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE-75120, Uppsala, Sweden
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Ghirardi ML. Implementation of photobiological H2 production: the O 2 sensitivity of hydrogenases. PHOTOSYNTHESIS RESEARCH 2015; 125:383-93. [PMID: 26022106 DOI: 10.1007/s11120-015-0158-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/13/2015] [Indexed: 05/10/2023]
Abstract
The search for the ultimate carbon-free fuel has intensified in recent years, with a major focus on photoproduction of H2. Biological sources of H2 include oxygenic photosynthetic green algae and cyanobacteria, both of which contain hydrogenase enzymes. Although algal and cyanobacterial hydrogenases perform the same enzymatic reaction through metallo-clusters, their hydrogenases have evolved separately, are expressed differently (transcription of algal hydrogenases is anaerobically induced, while bacterial hydrogenases are constitutively expressed), and display different sensitivity to O2 inactivation. Among various physiological factors, the sensitivity of hydrogenases to O2 has been one of the major factors preventing implementation of biological systems for commercial production of renewable H2. This review addresses recent strategies aimed at engineering increased O2 tolerance into hydrogenases (as of now mainly unsuccessful), as well as towards the development of methods to bypass the O2 sensitivity of hydrogenases (successful but still yielding low solar conversion efficiencies). The author concludes with a description of current approaches from various laboratories to incorporate multiple genetic traits into either algae or cyanobacteria to jointly address limiting factors other than the hydrogenase O2 sensitivity and achieve more sustained H2 photoproduction activity.
Collapse
Affiliation(s)
- Maria L Ghirardi
- National Renewable Energy Laboratory, 15013 Denver West Pkway, Golden, CO, 80401, USA,
| |
Collapse
|
3
|
Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci 2015; 16:10537-61. [PMID: 26006225 PMCID: PMC4463661 DOI: 10.3390/ijms160510537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria have garnered interest as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms can utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical processes. Our limited understanding of the cellular hydrogen production pathway is a primary setback in the potential scale-up of this process. In this regard, the present review discusses the recent insight around ferredoxin/flavodoxin as the likely electron donor to the bidirectional Hox hydrogenase instead of the generally accepted NAD(P)H. This may have far reaching implications in powering solar driven hydrogen production. However, it is evident that a successful hydrogen-producing candidate would likely integrate enzymatic traits from different species. Engineering the [NiFe] hydrogenases for optimal catalytic efficiency or expression of a high turnover [FeFe] hydrogenase in these photo-autotrophs may facilitate the development of strains to reach target levels of biohydrogen production in cyanobacteria. The fundamental advancements achieved in these fields are also summarized in this review.
Collapse
Affiliation(s)
- Namita Khanna
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| |
Collapse
|
4
|
Tsygankov AA, Khusnutdinova AN. Hydrogen in metabolism of purple bacteria and prospects of practical application. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Yao L, Qi F, Tan X, Lu X. Improved production of fatty alcohols in cyanobacteria by metabolic engineering. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:94. [PMID: 25024742 PMCID: PMC4096523 DOI: 10.1186/1754-6834-7-94] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/04/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fatty alcohols are widely used in industrial chemicals. The biosynthetic pathways for fatty alcohols are diverse and widely existing in nature. They display a high capacity to produce fatty alcohols by the metabolic engineering of different microbe hosts. Direct recycling of carbon dioxide to fatty alcohols can be achieved by introducing a fatty alcohol-producing pathway into photosynthetic cyanobacteria. According to our precious reports, a relatively low yield of fatty alcohols was obtained in the genetically engineered cyanobacterium Synechocystis sp. PCC 6803. RESULTS The photosynthetic production of fatty alcohols in Synechocystis sp. PCC 6803 was improved through heterologously expressing fatty acyl-Coenzyme A (acyl-CoA) reductase gene maqu_2220 from the marine bacterium Marinobacter aquaeolei VT8. Maqu_2220 has been proved to catalyze both the four-electron reduction of fatty acyl-CoA or acyl-Acyl Carrier Protein (acyl-ACP) and the two-electron reduction of fatty aldehyde to fatty alcohol. The knockout of the aldehyde-deformylating oxygenase gene (sll0208) efficiently blocked the hydrocarbon accumulation and redirected the carbon flux into the fatty alcohol-producing pathway. By knocking-out both sll0208 and sll0209 (encoding an acyl-ACP reductase), the productivity of fatty alcohols was further increased to 2.87 mg/g dry weight. CONCLUSIONS The highest yield of fatty alcohols was achieved in cyanobacteria by expressing the prokaryotic fatty acyl-CoA reductase Maqu_2220 and knocking-out the two key genes (sll0208 and sll0209) that are involved in the alka(e)ne biosynthesis pathway. Maqu_2220 was demonstrated as a robust enzyme for producing fatty alcohols in cyanobacteria. The production of fatty alcohols could be significantly increased by blocking the hydrocarbon biosynthesis pathway.
Collapse
Affiliation(s)
- Lun Yao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19 jia, Yuquan Street, Shijingshan District, Beijing 100049, China
| | - Fengxia Qi
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19 jia, Yuquan Street, Shijingshan District, Beijing 100049, China
| | - Xiaoming Tan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| |
Collapse
|
6
|
Shen Y. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv 2014. [DOI: 10.1039/c4ra06441k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Utilizing the energy, nutrients and CO2held within residual waste materials to provide all necessary inputs except for sunlight, the cultivation of algae becomes a closed-loop engineered ecosystem. Developing this green biotechnology is a tangible step towards a waste-free sustainable society.
Collapse
Affiliation(s)
- Yafei Shen
- Department of Environmental Science and Technology
- Interdisciplinary Graduate School of Science and Engineering
- Tokyo Institute of Technology
- Yokohama, Japan
| |
Collapse
|
7
|
Mardanov AV, Beletskii AV, Gumerov VM, Karbysheva EA, Mikheeva LE. New low-copy plasmid in cyanobacterium Anabaena variabilis. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413080127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
|
9
|
Srirangan K, Pyne ME, Perry Chou C. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. BIORESOURCE TECHNOLOGY 2011; 102:8589-8604. [PMID: 21514821 DOI: 10.1016/j.biortech.2011.03.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems.
Collapse
Affiliation(s)
- Kajan Srirangan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
10
|
Bandyopadhyay A, Stöckel J, Min H, Sherman LA, Pakrasi HB. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 2011; 1:139. [PMID: 21266989 DOI: 10.1038/ncomms1139] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 11/17/2010] [Indexed: 11/09/2022] Open
Abstract
Among the emerging renewable and green energy sources, biohydrogen stands out as an appealing choice. Hydrogen can be produced by certain groups of microorganisms that possess functional nitrogenase and/or bidirectional hydrogenases. In particular, the potential of photobiological hydrogen production by oxygenic photosynthetic microbes has attracted significant interest. However, nitrogenase and hydrogenase are generally oxygen sensitive, and require protective mechanisms to function in an aerobic extracellular environment. Here, we describe Cyanothece sp. ATCC 51142, a unicellular, diazotrophic cyanobacterium with the capacity to generate high levels of hydrogen under aerobic conditions. Wild-type Cyanothece 51142 can produce hydrogen at rates as high as 465 μmol per mg of chlorophyll per hour in the presence of glycerol. Hydrogen production in this strain is mediated by an efficient nitrogenase system, which can be manipulated to convert solar energy into hydrogen at rates that are several fold higher, compared with any previously described wild-type hydrogen-producing photosynthetic microbe.
Collapse
|
11
|
Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 2010; 74:529-51. [PMID: 21119016 PMCID: PMC3008169 DOI: 10.1128/mmbr.00033-10] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N(2) fixation and/or H(2) formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H(2) as a source of combustible energy. To enhance the rates of H(2) production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H(2) formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zülpicher Str. 47b, D-50923 Cologne, Germany.
| | | | | | | |
Collapse
|
12
|
Lee HS, Vermaas WF, Rittmann BE. Biological hydrogen production: prospects and challenges. Trends Biotechnol 2010; 28:262-71. [DOI: 10.1016/j.tibtech.2010.01.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/11/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
|
13
|
|
14
|
Masukawa H, Zhang X, Yamazaki E, Iwata S, Nakamura K, Mochimaru M, Inoue K, Sakurai H. Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:397-409. [PMID: 19005727 DOI: 10.1007/s10126-008-9156-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/07/2008] [Indexed: 05/26/2023]
Abstract
As a first step toward developing the methodology for screening large numbers of heterocyst-forming freshwater cyanobacteria strains for the presence of various types of nitrogenases and hydrogenases, we surveyed the distribution of these genes and their activities in 14 strains from culture collections. The nitrogenase genes include nif1 encoding a Mo-type nitrogenase expressed in heterocysts, nif2 expressed in vegetative cells and heterocysts under anaerobic conditions, and vnf encoding a V-type nitrogenase expressed in heterocysts. Two methods proved to be valuable in surveying the distribution of nitrogenase types. The first method was Southern blot hybridization of DNA digested with two different endonucleases and hybridized with nifD1, nifD2, and vnfD probes. The second method was ethane formation from acetylene to detect the presence of active V-nitrogenase. We found that all 14 strains have nifD1 genes, and eight strains also have nifD2 genes. Four of the strains have vnfD genes, in addition to nifD2 genes. It is curious that three of these four strains had similar hybridization patterns with all of the nifD1, nifD2, and vnfD probes, suggesting that there could be some bias in strains used in the present study or in strains held in culture collections. This point will need to be assessed in the future. For surveying the distribution of hydrogenases, Southern blot hybridization was an effective method. All strains surveyed had hup genes, with the majority of them also having hox genes.
Collapse
Affiliation(s)
- Hajime Masukawa
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|