1
|
Zhang J, Wei J, Yu H, Dong B. Genome-Wide Identification, Comparison, and Expression Analysis of Transcription Factors in Ascidian Styela clava. Int J Mol Sci 2021; 22:4317. [PMID: 33919240 PMCID: PMC8122590 DOI: 10.3390/ijms22094317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Tunicates include diverse species, as they are model animals for evolutionary developmental biology study. The embryonic development of tunicates is known to be extensively regulated by transcription factors (TFs). Styela clava, the globally distributed invasive tunicate, exhibits a strong capacity for environmental adaptation. However, the TFs were not systematically identified and analyzed. In this study, we reported 553 TFs categorized into 60 families from S. clava, based on the whole genome data. Comparison of TFs analysis among the tunicate species revealed that the gene number in the zinc finger superfamily displayed the most significant discrepancy, indicating this family was under the highly evolutionary selection and might be related to species differentiation and environmental adaptation. The greatest number of TFs was discovered in the Cys2His2-type zinc finger protein (zf-C2H2) family in S. clava. From the point of temporal view, more than half the TFs were expressed at the early embryonic stage. The expression correlation analysis revealed the existence of a transition for TFs expression from early embryogenesis to the later larval development in S. clava. Eight Hox genes were identified to be located on one chromosome, exhibiting different arrangement and expression patterns, compared to Ciona robusta (C. intestinalis type A). In addition, a total of 23 forkhead box (fox) genes were identified in S. clava, and their expression profiles referred to their potential roles in neurodevelopment and sensory organ development. Our data, thus, provides crucial clues to the potential functions of TFs in development and environmental adaptation in the leathery sea squirt.
Collapse
Affiliation(s)
- Jin Zhang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
| | - Jiankai Wei
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haiyan Yu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Dai TH, Sserwadda A, Song K, Zang YN, Shen HS. Cloning and Expression of Ecdysone Receptor and Retinoid X Receptor from Procambarus clarkii: Induction by Eyestalk Ablation. Int J Mol Sci 2016; 17:ijms17101739. [PMID: 27763563 PMCID: PMC5085767 DOI: 10.3390/ijms17101739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Ecdysone receptor and retinoid X receptor are key regulators in molting. Here, full length ecdysone receptor (PcEcR) and retinoid X receptor (PcRXR) cDNAs from Procambarus clarkii were cloned. Full length cDNA of PcEcR has 2500 bp, encoding 576 amino acid proteins, and full length cDNA of PcRXR has 2593 bp, in which a 15 bp and a 204 bp insert/deletion splice variant regions in DNA binding domain and hinge domain were identified. The two splice variant regions in PcRXR result four isoforms: PcRXR1-4, encoding 525, 520, 457 and 452 amino acids respectively. PcEcR was highly expressed in the hepatopancreas and eyestalk and PcRXR was highly expressed in the eyestalk among eight examined tissues. Both PcEcR and PcRXR had induced expression after eyestalk ablation (ESA) in the three examined tissues. In muscle, PcEcR and PcRXR were upregulated after ESA, PcEcR reached the highest level on day 3 after ESA and increased 33.5-fold relative to day 0, and PcRXR reached highest the level on day 1 after ESA and increased 2.7-fold relative to day 0. In the hepatopancreas, PcEcR and PcRXR dEcReased continuously after ESA, and the expression levels of PcEcR and PcRXR were only 0.7% and 1.7% on day 7 after ESA relative to day 0, respectively. In the ovaries, PcEcR was upregulated after ESA, reached the highest level on day 3 after ESA, increased 3.0-fold relative to day 0, and the expression level of PcRXR changed insignificantly after ESA (p > 0.05). The different responses of PcEcR and PcRXR after ESA indicates that different tissues play different roles (and coordinates their functions) in molting.
Collapse
Affiliation(s)
- Tian-Hao Dai
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Ali Sserwadda
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Kun Song
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Ya-Nan Zang
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Huai-Shun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
3
|
Gaertner K, Chandler GT, Quattro J, Ferguson PL, Sabo-Attwood T. Identification and expression of the ecdysone receptor in the harpacticoid copepod, Amphiascus tenuiremis, in response to fipronil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 76:39-45. [PMID: 22000904 DOI: 10.1016/j.ecoenv.2011.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/15/2011] [Accepted: 09/10/2011] [Indexed: 05/31/2023]
Abstract
The marine copepod, Amphiascus tenuiremis (A. tenuiremis), is a well characterized invertebrate model for the screening and evaluation of endocrine and reproductive toxins using life-cycle assays. These tests evaluate phenotypic endpoints related to development and reproduction, which are utilized to predict population outcomes. Some of these endpoints in arthropods, including sexual maturation and molting, are controlled by the hormone ecdysone which acts through its cognate receptor, the ecdysone receptor. The purpose of this research was to obtain and characterize sequence information for the A. tenuiremis ecdysone receptor and investigate modulation of expression levels by fipronil, an insecticide that causes infertility in males and reduced egg extrusion in female copepods, and ponasterone, a natural ecdysone receptor agonist. Results show successful cloning and phylogenetic analysis of the ecdysone receptor for A. tenuiremis, providing the first genetic information for a hormone receptor in this species. Exposure of copepodites to fipronil for 1, 2, 4, 18 and 30 h caused a significant increase in ecdysone receptor transcriptional expression at 30 h compared to control unexposed animals. This work illustrates a potential mechanism whereby exposure to fipronil, and potentially other endocrine disrupting compounds, results in impacted reproduction. Furthermore, this exemplifies the potential utility of ecdysone receptor transcriptional measurement as a sensitive and rapid biomarker of ecological relevance when linked to traditional A. tenuiremis bioassays.
Collapse
Affiliation(s)
- Karin Gaertner
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|