1
|
Dorogova NV, Zubkova AE, Fedorova ЕV, Bolobolova ЕU, Baricheva ЕМ. [Lack of GAGA protein in Trl mutants causes massive cell death in Drosophila spermatogenesis and oogenesis]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:292-300. [PMID: 34901726 PMCID: PMC8627872 DOI: 10.18699/vj21.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022] Open
Abstract
Белок дрозофилы GAGA (GAF) является фактором эпигенетической регуляции транскрипции
большой группы генов с широким разнообразием клеточных функций. GAF кодируется геном Trithorax-like
(Trl), который экспрессируется в различных органах и тканях на всех стадиях онтогенеза дрозофилы. Мутации этого гена вызывают множественные нарушения развития. В предыдущих работах мы показали, что этот
белок необходим для развития половой системы как самцов, так и самок дрозофилы. Снижение экспрессии
гена Trl приводило ко множественным нарушениям спермато- и оогенеза. Одно из значительных нарушений было связано с массовой деградацией и потерей клеток зародышевого пути, что позволило предположить, что этот белок вовлечен в регуляцию клеточной гибели. В представленной работе мы провели более
детальное цитологическое исследование, чтобы определить, какой тип гибели клеток зародышевого пути
характерен для Trl-мутантов, и происходят ли нарушения или изменения этого процесса по сравнению с
нормой. Полученные результаты показали, что недостаток белка GAF вызывает массовую гибель клеток зародышевого пути как у самок, так и самцов дрозофилы, но проявляется эта гибель в зависимости от пола
по-разному. У самок, мутантных по гену Trl, фенотипически этот процесс не отличается от нормы и в гибнущих яйцевых камерах выявлены признаки апоптоза и аутофагии клеток зародышевого пути. У самцов, мутантных по гену Trl, в отличие от самок, не обнаружены признаки апоптоза. У самцов мутации Trl индуцируют
массовую гибель клеток через аутофагию, что не характерно для сперматогенеза дрозофилы и не описано
ранее ни в норме, ни у мутаций по другим генам. Таким образом, недостаток GAF у мутантов Trl приводит
к усилению апоптотической и аутофагической гибели клеток зародышевого пути. Эктопическая клеточная
гибель и атрофия зародышевой линии, вероятно, связаны с нарушением экспрессии генов-мишеней GAGAфактора, среди которых есть гены, регулирующие как апоптоз, так и аутофагию.
Collapse
Affiliation(s)
- N V Dorogova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A E Zubkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - Е V Fedorova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Е U Bolobolova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Е М Baricheva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Lebo DPV, McCall K. Murder on the Ovarian Express: A Tale of Non-Autonomous Cell Death in the Drosophila Ovary. Cells 2021; 10:cells10061454. [PMID: 34200604 PMCID: PMC8228772 DOI: 10.3390/cells10061454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Throughout oogenesis, Drosophila egg chambers traverse the fine line between survival and death. After surviving the ten early and middle stages of oogenesis, egg chambers drastically change their size and structure to produce fully developed oocytes. The development of an oocyte comes at a cost, the price is the lives of the oocyte’s 15 siblings, the nurse cells. These nurse cells do not die of their own accord. Their death is dependent upon their neighbors—the stretch follicle cells. Stretch follicle cells are nonprofessional phagocytes that spend the final stages of oogenesis surrounding the nurse cells and subsequently forcing the nurse cells to give up everything for the sake of the oocyte. In this review, we provide an overview of cell death in the ovary, with a focus on recent findings concerning this phagocyte-dependent non-autonomous cell death.
Collapse
|
3
|
Bolobolova EU, Dorogova NV, Fedorova SA. Major Scenarios of Genetically Regulated Cell Death during Oogenesis in Drosophilamelanogaster. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Kukushkina IV, Makhnovskii PA, Nefedova LN, Balakireva EA, Romanova NI, Kuzmin IV, Lavrenov AR, Kim AI. A Study of the Fertility of a Drosophila melanogaster MS Strain with Impaired Transposition Control of the gypsy Mobile Element. Mol Biol 2020. [DOI: 10.1134/s0026893320030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Mazurkiewicz-Kania M, Simiczyjew B, Jędrzejowska I. Differentiation of follicular epithelium in polytrophic ovaries of Pieris napi (Lepidoptera: Pieridae)-how far to Drosophila model. PROTOPLASMA 2019; 256:1433-1447. [PMID: 31134405 PMCID: PMC6713685 DOI: 10.1007/s00709-019-01391-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Lepidoptera together with its sister group Trichoptera belongs to the superorder Amphiesmenoptera, which is closely related to the Antliophora, comprising Diptera, Siphonaptera, and Mecoptera. In the lepidopteran Pieris napi, a representative of the family Pieridae, the ovaries typical of butterflies are polytrophic and consist of structural ovarian units termed ovarioles. Each ovariole is composed of a terminal filament, germarium, vitellarium, and ovariole stalk. The germarium houses developing germ cell clusters and somatic prefollicular and follicular cells. The significantly elongated vitellarium contains linearly arranged ovarian follicles in successive stages of oogenesis (previtellogenesis, vitellogenesis, and choriogenesis). Each follicle consists of an oocyte and seven nurse cells surrounded by follicular epithelium. During oogenesis, follicular cells diversify into five morphologically and functionally distinct subpopulations: (1) main body follicular cells (mbFC), (2) stretched cells (stFC), (3) posterior terminal cells (pFC), (4) centripetal cells (cpFC), and (5) interfollicular stalk cells (IFS). Centripetal cells are migratorily active and finally form the micropyle. Interfollicular stalk cells derive from mbFC as a result of mbFC intercalation. Differentiation and diversification of follicular cells in Pieris significantly differ from those described in Drosophila in the number of subpopulations and their origin and function during oogenesis.
Collapse
Affiliation(s)
- Marta Mazurkiewicz-Kania
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland.
| | - Bożena Simiczyjew
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Izabela Jędrzejowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| |
Collapse
|
6
|
Ogienko AA, Yarinich LA, Fedorova EV, Lebedev MO, Andreyeva EN, Pindyurin AV, Baricheva EM. New slbo-Gal4 driver lines for the analysis of border cell migration during Drosophila oogenesis. Chromosoma 2018; 127:475-487. [DOI: 10.1007/s00412-018-0676-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/09/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022]
|
7
|
Lirakis M, Dolezal M, Schlötterer C. Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:175-185. [PMID: 29649483 DOI: 10.1016/j.jinsphys.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Organisms regularly encounter unfavorable conditions and the genetic adaptations facilitating survival have been of long-standing interest to evolutionary biologists. Winter is one particularly stressful condition for insects, during which they encounter low temperatures and scarcity of food. Despite dormancy being a well-studied adaptation to facilitate overwintering, there is still considerable controversy about the distribution of dormancy among natural populations and between species in Drosophila. The current definition of dormancy as developmental arrest of oogenesis at the previtellogenic stage (stage 7) distinguishes dormancy from general stress related block of oogenesis at early vitellogenic stages (stages 8 - 9). In an attempt to resolve this, we scrutinized reproductive dormancy in D. melanogaster and D. simulans. We show that dormancy shows the same hallmarks of arrest of oogenesis at stage 9, as described for other stressors and propose a new classification for dormancy. Applying this modified classification, we show that both species express dormancy in cosmopolitan and African populations, further supporting that dormancy uses an ancestral pathway induced by environmental stress. While we found significant differences between individuals and the two Drosophila species in their sensitivity to cold temperature stress, we also noted that extreme temperature stress (8 °C) resulted in very strong dormancy incidence, which strongly reduced the differences seen at less extreme temperatures. We conclude that dormancy in Drosophila should not be considered a special trait, but is better understood as a generic stress response occurring at low temperatures.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria; Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria.
| | - Marlies Dolezal
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
8
|
Fedorov VI, Weisman NY. The development of F1 progeny from mature egg cells after terahertz radiation of parental drosophila. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Weisman NY, Fedorov VI. Dynamics of reaching imago stage by F1 animals after terahertz irradiation of parental Drosophila. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tran M, Tsarouhas V, Kegel A. Early development of Drosophila embryos requires Smc5/6 function during oogenesis. Biol Open 2016; 5:928-41. [PMID: 27288507 PMCID: PMC4958276 DOI: 10.1242/bio.019000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mutations in structural maintenance of chromosomes (Smc) proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis. Summary: Early emerging problems during oogenesis, such as DNA double-strand breaks, can affect chromosome duplication and segregation in embryogenesis in Drosophila. Moreover, environmental cues including temperature are important for proper oogenesis.
Collapse
Affiliation(s)
- Martin Tran
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm S-17177, Sweden
| | - Vasilios Tsarouhas
- Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm S-10691, Sweden
| | - Andreas Kegel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm S-17177, Sweden
| |
Collapse
|
11
|
Weisman NY, Fedorov VI, Nemova EF. Terahertz radiation improves adaptation characteristics in Drosophila melanogaster. CONTEMP PROBL ECOL+ 2015. [DOI: 10.1134/s199542551502016x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ogienko AA, Karagodin DA, Lashina VV, Baiborodin SI, Omelina ES, Baricheva EM. Capping protein beta is required for actin cytoskeleton organisation and cell migration during Drosophila oogenesis. Cell Biol Int 2014; 37:149-59. [PMID: 23339103 DOI: 10.1002/cbin.10025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 11/24/2012] [Indexed: 11/08/2022]
Abstract
Capping protein (CP) is a well-characterised actin-binding protein important for regulation of actin filament (AF) assembly. CP caps the barbed end of AFs, inhibiting the addition and loss of actin monomers. In Drosophila melanogaster, the gene encoding CP β-subunit is named capping protein beta (cpb; see Hopmann et al. [1996] J Cell Biol 133: 1293-305). The cpb level is reduced in the Drosophila bristle actin cytoskeleton and becomes disorganised with abnormal morphology. A reduced level of the CP protein in ovary results in disruption of oocyte determination, and disturbance of nurse cell (NC) cortical integrity and dumping. We describe novel defects appearing in cpb mutants during oogenesis, in which cpb plays an important role in border and centripetal follicle cell migration, ring canal development and cytoplasmic AF formation. The number of long cytoplasmic AFs was dramatically reduced in cpb hypomorphs and abnormal actin aggregates was seen on the inner side of NC membranes. A hypothesis to explain the formation of abnormal short-cut cytoplasmic AFs and actin aggregates in the cpb mutant NCs was proffered, along with a discussion of the reasons for 'dumpless' phenotype formation in the mutants.
Collapse
Affiliation(s)
- Anna A Ogienko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
13
|
Basso AL, Forneris NS, Filiberti A, Argaraña CE, Rabossi A, Quesada-Allué LA. Metamorphosis and gonad maturation in the horn fly Haematobia irritans. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:174. [PMID: 22957976 PMCID: PMC3465833 DOI: 10.1673/031.011.17401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The bloodsucking horn fly, Haematobia irritans (L.) (Diptera: Muscidae), is one of the most damaging pests of pasture cattle in many areas of the world. Both male and female imagoes spend their adult stage on the host, while immature stages develop in dung. Our goal was to determine if the progress of H. irritans gonad maturation can be correlated with eye and cuticle pigmentation events that occur during development of the imago within the puparium. The progression of germline cell divisions in immature gonads was analyzed from the beginning of the third larval instar (48 hours after egg hatch) until imago ecdysis. In the developing male larval gonad, meiosis began 72 hours after egg hatch, whereas in females oogonia were premeiotic at 72 hours. Meiosis was not detected in females until the mid-pharate adult stage, 120 hours after puparium formation. Therefore, gonad maturation in females appears to be delayed 144 hours with respect to that in males. In the stages within the puparium, the timing of germline cell division events was correlated with the progress of pigmentation of the eyes and cuticle as external markers.
Collapse
Affiliation(s)
- Alicia L Basso
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martin 4453, (1417) Buenos Aires, Argentina
| | - Natalia S. Forneris
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martin 4453, (1417) Buenos Aires, Argentina
| | - Adrián Filiberti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas-Universidad Nacional de Córdoba and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria (5000), Córdoba, Argentina
| | - Carlos E. Argaraña
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas-Universidad Nacional de Córdoba and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria (5000), Córdoba, Argentina
| | - Alejandro Rabossi
- Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Fundación Instituto Leloir and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| | - Luis A. Quesada-Allué
- Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Fundación Instituto Leloir and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| |
Collapse
|