1
|
Kroupin P, Chernook A, Karlov G, Soloviev A, Divashuk M. Effect of Dwarfing Gene Ddw1 on Height and Agronomic Traits in Spring Triticale in Greenhouse and Field Experiments in a Non-Black Earth Region of Russia. PLANTS 2019; 8:plants8050131. [PMID: 31100890 PMCID: PMC6571949 DOI: 10.3390/plants8050131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/17/2023]
Abstract
Triticale is a relatively new crop which still possesses serious drawbacks that can be significantly improved by breeding. The dwarfing genes proved to be very useful in the development of new lodging resistant and productive cultivars of winter triticale. The aim of our research was to assess the effect of the Ddw1 dwarfing gene from rye on the agronomic valuable traits in spring triticale. The Ddw1 effect was studied in the greenhouse experiment in segregating the F2:3 population and in the field of F3:4 and F4:5 families derived from crossing winter triticale ‘Hongor’ (Ddw1Ddw1) and spring triticale ‘Dublet’ (ddw1ddw1). As a result, in all three generations, a strong decrease in plant height was demonstrated that was accompanied by a decrease in grain weight per spike and 1000-grain weight. In field experiments, a decrease in spike length and increase in spike density and delay in flowering and heading were observed. As a result of decrease in culm vegetative weight due to Ddw1, the harvest index measured in F4:5 increased. The spike fertility and number of grains were not affected by Ddw1. The comparison of Ddw1 in rye, winter, and spring triticale, and the possible role of Ddw1 in improving spring triticale are discussed.
Collapse
Affiliation(s)
- Pavel Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Centre for Molecular Biotechnology, Russian State Agrarian University ⁻ Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow 127550, Russia.
| | - Anastasiya Chernook
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Centre for Molecular Biotechnology, Russian State Agrarian University ⁻ Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow 127550, Russia.
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Centre for Molecular Biotechnology, Russian State Agrarian University ⁻ Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow 127550, Russia.
| | - Alexander Soloviev
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Department of Distant Hybridization, N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya str., 4, Moscow 127276, Russia.
| | - Mikhail Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia.
- Centre for Molecular Biotechnology, Russian State Agrarian University ⁻ Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow 127550, Russia.
| |
Collapse
|