1
|
Lavrov KV, Shemyakina AO, Grechishnikova EG, Gerasimova TV, Kalinina TI, Novikov AD, Leonova TE, Ryabchenko LE, Bayburdov TA, Yanenko AS. A new concept of biocatalytic synthesis of acrylic monomers for obtaining water-soluble acrylic heteropolymers. Metab Eng Commun 2024; 18:e00231. [PMID: 38222043 PMCID: PMC10787234 DOI: 10.1016/j.mec.2023.e00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Rhodococcus strains were designed as model biocatalysts (BCs) for the production of acrylic acid and mixtures of acrylic monomers consisting of acrylamide, acrylic acid, and N-alkylacrylamide (N-isopropylacrylamide). To obtain BC strains, we used, among other approaches, adaptive laboratory evolution (ALE), based on the use of the metabolic pathway of amide utilization. Whole genome sequencing of the strains obtained after ALE, as well as subsequent targeted gene disruption, identified candidate genes for three new amidases that are promising for the development of BCs for the production of acrylic acid from acrylamide. New BCs had two types of amidase activities, acrylamide-hydrolyzing and acrylamide-transferring, and by varying the ratio of these activities in BCs, it is possible to influence the ratio of monomers in the resulting mixtures. Based on these strains, a prototype of a new technological concept for the biocatalytic synthesis of acrylic monomers was developed for the production of water-soluble acrylic heteropolymers containing valuable N-alkylacrylamide units. In addition to the possibility of obtaining mixtures of different compositions, the advantages of the concept are a single starting reagent (acrylamide), more unification of processes (all processes are based on the same type of biocatalyst), and potentially greater safety for personnel and the environment compared to existing chemical technologies.
Collapse
Affiliation(s)
- Konstantin V. Lavrov
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Anna O. Shemyakina
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Elena G. Grechishnikova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana V. Gerasimova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana I. Kalinina
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Andrey D. Novikov
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana E. Leonova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Ludmila E. Ryabchenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Telman A. Bayburdov
- Saratov Chemical Plant of Acrylic Polymers “AKRYPOL”, 410059, Saratov, Russia
| | - Alexander S. Yanenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| |
Collapse
|
2
|
Ganjoo A, Babu V. Recombinant Amidases: Recent Insights and its Applications in the Production of Industrially Important Fine Chemicals. Mol Biotechnol 2024:10.1007/s12033-024-01123-8. [PMID: 38598092 DOI: 10.1007/s12033-024-01123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
The current research for the synthesis of industrially important fine chemicals is more inclined towards developing enzyme-based processes. The biotransformation reactions wherein microbial cells/enzymes are used, have become essential in making the process efficient, green, and economical. Amongst industrially important enzymes, amidase is one of the most versatile tools in biocatalysis and biotransformation reactions. It shows broad substrate specificity and sturdy functional characteristics because of its promiscuous nature. Further, advancement in the area led to the development of amidase recombinant systems, which are developed using biotechnology and enzyme engineering tools. Additionally, recombinant amidases may be instrumental in commercializing the synthesis of fine chemicals such as hydroxamic acids that have a significant pharmaceutical market. Hence, the present review focuses on highlighting and assimilating the tools and techniques used in developing recombinant systems followed by their applications.
Collapse
Affiliation(s)
- Ananta Ganjoo
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vikash Babu
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Ruan LT, Zheng RC, Zheng YG. Mining and characterization of two amidase signature family amidases from Brevibacterium epidermidis ZJB-07021 by an efficient genome mining approach. Protein Expr Purif 2016; 126:16-25. [DOI: 10.1016/j.pep.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/28/2022]
|
4
|
Lavrov KV, Karpova IY, Epremyan AS, Yanenko AS. Cloning and analysis of a new aliphatic amidase gene from Rhodococcus erythropolis TA37. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Lavrov KV, Novikov AD, Ryabchenko LE, Yanenko AS. Expression of acylamidase gene in Rhodococcus erythropolis strains. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414090087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|