1
|
Li X, Tuo Y, Li Y, Hu J, Sossah FL, Dai D, Liu M, Guo Y, Zhang B, Li X, Li Y. Two New Species of the Genus Diderma (Physarales, Didymiaceae) in China with an Addition to the Distribution. J Fungi (Basel) 2024; 10:514. [PMID: 39194840 DOI: 10.3390/jof10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Myxomycetes are an important component of terrestrial ecosystems, and in order to understand their diversity and phylogenetic relationships, taxonomic issues need to be addressed. In our 1985-2021 biodiversity investigations in Shaanxi Province, Jilin Province, the Inner Mongolia Autonomous Region, Hubei Province, and Henan Province, China, Diderma samples were observed on rotten leaves, rotten branches, and dead wood. The samples were studied, based on morphological features coupled with multigene phylogenetic analyses of nSSU, EF-1α, and COI sequence data, which revealed two new species (Diderma shaanxiense sp. nov. and D. clavatocolumellum sp. nov.) and two known species (D. radiatum and D. globosum). In addition, D. radiatum and D. globosum were newly recorded in Henan Province and the Inner Mongolia Autonomous Region, respectively. The paper includes comprehensive descriptions, detailed micrographs, and the outcomes of phylogenetic analyses for both the newly discovered and known species. Additionally, it offers morpho-logical comparisons between the new species and similar ones.
Collapse
Affiliation(s)
- Xuefei Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Mycology, Jilin Agricultural University, Changchun 130118, China
| | - Yonglan Tuo
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Mycology, Jilin Agricultural University, Changchun 130118, China
| | - You Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiajun Hu
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- School of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Frederick Leo Sossah
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Coconut Research Programme, Oil Palm Research Institute, Council for Scientific and Industrial Research (CSIR), Sekondi P.O. Box 245, Ghana
| | - Dan Dai
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Minghao Liu
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Mycology, Jilin Agricultural University, Changchun 130118, China
| | - Yanfang Guo
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bo Zhang
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Mycology, Jilin Agricultural University, Changchun 130118, China
| | - Xiao Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Mycology, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Mycology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Shchepin O, Novozhilov Y, Woyzichovski J, Bog M, Prikhodko I, Fedorova N, Gmoshinskiy V, Borg Dahl M, Dagamac NHA, Yajima Y, Schnittler M. Genetic structure of the protist Physarum albescens (Amoebozoa) revealed by multiple markers and genotyping by sequencing. Mol Ecol 2021; 31:372-390. [PMID: 34676941 DOI: 10.1111/mec.16239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 01/05/2023]
Abstract
Myxomycetes are terrestrial protists with many presumably cosmopolitan species dispersing via airborne spores. A truly cosmopolitan species would suffer from outbreeding depression hampering local adaptation, while locally adapted species with limited distribution would be at a higher risk of extinction in changing environments. Here, we investigate intraspecific genetic diversity and phylogeography of Physarum albescens over the entire Northern Hemisphere. We sequenced 324 field collections of fruit bodies for 1-3 genetic markers (SSU, EF1A, COI) and analysed 98 specimens with genotyping by sequencing. The structure of the three-gene phylogeny, SNP-based phylogeny, phylogenetic networks, and the observed recombination pattern of three independently inherited gene markers can be best explained by the presence of at least 18 reproductively isolated groups, which can be seen as cryptic species. In all intensively sampled regions and in many localities, members of several phylogroups coexisted. Some phylogroups were found to be abundant in only one region and completely absent in other well-studied regions, and thus may represent regional endemics. Our results demonstrate that the widely distributed myxomycete species Ph. albescens represents a complex of at least 18 cryptic species, and some of these seem to have a limited geographical distribution. In addition, the presence of groups of presumably clonal specimens suggests that sexual and asexual reproduction coexist in natural populations of myxomycetes.
Collapse
Affiliation(s)
- Oleg Shchepin
- Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia.,General Botany and Plant Systematics, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Yuri Novozhilov
- Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Jan Woyzichovski
- General Botany and Plant Systematics, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Manuela Bog
- General Botany and Plant Systematics, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Ilya Prikhodko
- Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Nadezhda Fedorova
- Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia.,Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir Gmoshinskiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Polistovsky National Nature Reserve, Pskov Region, Russia
| | - Mathilde Borg Dahl
- General Botany and Plant Systematics, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany.,Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Nikki H A Dagamac
- General Botany and Plant Systematics, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany.,Department of Biological Sciences and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Yuka Yajima
- Muroran Institute of Technology, Muroran, Japan
| | - Martin Schnittler
- General Botany and Plant Systematics, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Evidence of Intra-individual SSU Polymorphisms in Dark-spored Myxomycetes (Amoebozoa). Protist 2019; 170:125681. [PMID: 31586669 DOI: 10.1016/j.protis.2019.125681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 11/24/2022]
Abstract
The nuclear small subunit rRNA gene (SSU or 18S) is a marker frequently used in phylogenetic and barcoding studies in Amoebozoa, including Myxomycetes. Despite its common usage and the confirmed existence of divergent copies of ribosomal genes in other protists, the potential presence of intra-individual SSU variability in Myxomycetes has never been studied before. Here we investigated the pattern of nucleotide polymorphism in the 5' end fragment of SSU by cloning and sequencing a total of 238 variants from eight specimens, each representing a species of the dark-spored orders Stemonitidales and Physarales. After excluding singletons, a relatively low SSU intra-individual variability was found but our data indicate that this might be a widely distributed phenomenon in Myxomycetes as all samples analyzed possessed various ribotypes. To determine if the occurrence of multiple SSU variants within a single specimen has a negative effect on the circumscription of species boundaries, we conducted phylogenetic analyses that revealed that clone variation may be detrimental for inferring phylogenetic relationships among some of the specimens analyzed. Despite that intra-individual variability should be assessed in additional taxa, our results indicate that special care should be taken for species identification when working with closely related species.
Collapse
|