1
|
Posukh OL. Genetic etiology of hearing loss in Russia. Hum Genet 2021; 141:649-663. [PMID: 34363095 DOI: 10.1007/s00439-021-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Prevalence and locus/allelic heterogeneity of the hereditary hearing loss (HL) vary significantly in different human populations. Investigation of the hereditary HL diversity and the evaluation of the factors determining the region-specific landscapes of genetic HL are important for local healthcare and medical genetic services. This review presents the summarized data from the published studies concerning the genetic etiology of HL in different populations of Russia. Multiethnic population of Russia (in total, about 146 million on 2021) includes over 180 different ethnic groups, the number of which varies from millions to just several thousand people. Among them, Russians are the largest group (about 111 million). The contribution of GJB2 gene in the HL etiology in patients of different ethnicities and ethnic-specific prevalence of the GJB2 pathogenic variants were studied in many local populations of Russia. However, the investigation of other "deafness" genes is still limited to a relatively small number of studies on patients with HL of unsolved etiology.
Collapse
Affiliation(s)
- Olga L Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 630090. .,Novosibirsk State University, Novosibirsk, Russia, 630090.
| |
Collapse
|
2
|
Romanov GP, Pshennikova VG, Lashin SA, Solovyev AV, Teryutin FM, Cherdonova AM, Borisova TV, Sazonov NN, Khusnutdinova EK, Posukh OL, Fedorova SA, Barashkov NA. A new approach to estimating the prevalence of hereditary hearing loss: An analysis of the distribution of sign language users based on census data in Russia. PLoS One 2020; 15:e0242219. [PMID: 33253245 PMCID: PMC7703874 DOI: 10.1371/journal.pone.0242219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/28/2020] [Indexed: 11/19/2022] Open
Abstract
The absence of comparable epidemiological data challenges the correct estimation of the prevalence of congenital hearing loss (HL) around the world. Sign language (SL) is known as the main type of communication of deaf people. We suggest that the distribution of SL can be interpreted as an indirect indicator of the prevalence of congenital HL. Since a significant part of congenital HL is due to genetic causes, an assessment of the distribution of SL users can reveal regions with an extensive accumulation of hereditary HL. For the first time, we analyzed the data on the distribution of SL users that became available for the total population of Russia by the 2010 census. Seventy-three out of 85 federal regions of Russia were ranked into three groups by the 25th and 75th percentiles of the proportion of SL users: 14 regions-"low proportion"; 48 regions-"average proportion"; and 11 regions-"high proportion". We consider that the observed uneven prevalence of SL users can reflect underlying hereditary forms of congenital HL accumulated in certain populations by specific genetic background and population structure. At least, the data from this study indicate that the highest proportions of SL users detected in some Siberian regions are consistent with the reported accumulation of specific hereditary HL forms in indigenous Yakut, Tuvinian and Altaian populations.
Collapse
Affiliation(s)
- Georgii P. Romanov
- Laboratory of Molecular Biology, MK Ammosov North-Eastern Federal University, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russia
| | - Vera G. Pshennikova
- Laboratory of Molecular Biology, MK Ammosov North-Eastern Federal University, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russia
| | - Sergey A. Lashin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Aisen V. Solovyev
- Laboratory of Molecular Biology, MK Ammosov North-Eastern Federal University, Yakutsk, Russia
- Laboratory of the Human in the Arctic, Institute for Humanitarian Research and North Indigenous Peoples Problems, Federal Research Centre “The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences”, Yakutsk, Russia
| | - Fedor M. Teryutin
- Laboratory of Molecular Biology, MK Ammosov North-Eastern Federal University, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russia
| | | | - Tuyara V. Borisova
- Laboratory of Molecular Biology, MK Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - Nikolay N. Sazonov
- Laboratory of Molecular Biology, MK Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - Elza K. Khusnutdinova
- Laboratory of Human Molecular Genetics, Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sardana A. Fedorova
- Laboratory of Molecular Biology, MK Ammosov North-Eastern Federal University, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russia
| | - Nikolay A. Barashkov
- Laboratory of Molecular Biology, MK Ammosov North-Eastern Federal University, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yakutsk, Russia
| |
Collapse
|
3
|
Pandya A, O'Brien A, Kovasala M, Bademci G, Tekin M, Arnos KS. Analyses of del(GJB6-D13S1830) and del(GJB6-D13S1834) deletions in a large cohort with hearing loss: Caveats to interpretation of molecular test results in multiplex families. Mol Genet Genomic Med 2020; 8:e1171. [PMID: 32067424 PMCID: PMC7196463 DOI: 10.1002/mgg3.1171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations involving the closely linked GJB2 and GJB6 at the DFNB1 locus are a common genetic cause of profound congenital hearing loss in many populations. In some deaf GJB2 heterozygotes, a 309 kb deletion involving the GJB6 has been found to be the cause for hearing loss when inherited in trans to a GJB2 mutation. METHODS We screened 2,376 probands from a National DNA Repository of deaf individuals. RESULTS Fifty-two of 318 heterozygous probands with pathogenic GJB2 sequence variants had a GJB6 deletion. Additionally, eight probands had an isolated heterozygous GJB6 deletion that did not explain their hearing loss. In two deaf subjects, including one proband, a homozygous GJB6 deletion was the cause for their hearing loss, a rare occurrence not reported to date. CONCLUSION This study represents the largest US cohort of deaf individuals harboring GJB2 and GJB6 variants, including unique subsets of families with deaf parents. Testing additional members to clarify the phase of GJB2/GJB6 variants in multiplex families was crucial in interpreting clinical significance of the variants in the proband. It highlights the importance of determining the phase of GJB2/GJB6 variants when interpreting molecular test results especially in multiplex families with assortative mating.
Collapse
Affiliation(s)
- Arti Pandya
- Department of Pediatrics, Division of Genetics and Metabolism, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Alexander O'Brien
- Department of Pediatrics, Division of Genetics and Metabolism, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Michael Kovasala
- Department of Pediatrics, Division of Genetics and Metabolism, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Kathleen S Arnos
- Department of Science, Technology, & Mathematics, Gallaudet University, Washington, DC, USA
| |
Collapse
|
4
|
Posukh OL, Zytsar MV, Bady-Khoo MS, Danilchenko VY, Maslova EA, Barashkov NA, Bondar AA, Morozov IV, Maximov VN, Voevoda MI. Unique Mutational Spectrum of the GJB2 Gene and its Pathogenic Contribution to Deafness in Tuvinians (Southern Siberia, Russia): A High Prevalence of Rare Variant c.516G>C (p.Trp172Cys). Genes (Basel) 2019; 10:E429. [PMID: 31195736 PMCID: PMC6627114 DOI: 10.3390/genes10060429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Mutations in the GJB2 gene are the main cause for nonsyndromic autosomal recessive deafness 1A (DFNB1A) in many populations. GJB2 mutational spectrum and pathogenic contribution are widely varying in different populations. Significant efforts have been made worldwide to define DFNB1A molecular epidemiology, but this issue still remains open for some populations. The main aim of study is to estimate the DFNB1A prevalence and GJB2 mutational spectrum in Tuvinians-an indigenous population of the Tyva Republic (Southern Siberia, Russia). Sanger sequencing was applied to analysis of coding (exon 2) and non-coding regions of GJB2 in a cohort of Tuvinian patients with hearing impairments (n = 220) and ethnically matched controls (n = 157). Diagnosis of DFNB1A was established for 22.3% patients (28.8% of familial vs 18.6% of sporadic cases). Our results support that patients with monoallelic GJB2 mutations (8.2%) are coincidental carriers. Recessive mutations p.Trp172Cys, c.-23+1G>A, c.235delC, c.299_300delAT, p.Val37Ile and several benign variants were found in examined patients. A striking finding was a high prevalence of rare variant p.Trp172Cys (c.516G>C) in Tuvinians accounting for 62.9% of all mutant GJB2 alleles and a carrier frequency of 3.8% in controls. All obtained data provide important targeted information for genetic counseling of affected Tuvinian families and enrich current information on variability of GJB2 worldwide.
Collapse
Affiliation(s)
- Olga L Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Marina V Zytsar
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Marita S Bady-Khoo
- Research Institute of Medical-Social Problems and Management of the Republic of Tyva, 667000 Kyzyl, Russia.
- Perinatal Center of the Republic of Tyva, 667000 Kyzyl, Russia.
| | - Valeria Yu Danilchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Ekaterina A Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Nikolay A Barashkov
- Yakut Scientific Centre of Complex Medical Problems, 677019 Yakutsk, Russia.
- M.K. Ammosov North-Eastern Federal University, 677027 Yakutsk, Russia.
| | - Alexander A Bondar
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Igor V Morozov
- Novosibirsk State University, 630090 Novosibirsk, Russia.
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Vladimir N Maximov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Michael I Voevoda
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Novosibirsk State University, 630090 Novosibirsk, Russia.
| |
Collapse
|
5
|
Comparison of Predictive In Silico Tools on Missense Variants in GJB2, GJB6, and GJB3 Genes Associated with Autosomal Recessive Deafness 1A (DFNB1A). ScientificWorldJournal 2019; 2019:5198931. [PMID: 31015822 PMCID: PMC6446107 DOI: 10.1155/2019/5198931] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 01/30/2023] Open
Abstract
In silico predictive software allows assessing the effect of amino acid substitutions on the structure or function of a protein without conducting functional studies. The accuracy of in silico pathogenicity prediction tools has not been previously assessed for variants associated with autosomal recessive deafness 1A (DFNB1A). Here, we identify in silico tools with the most accurate clinical significance predictions for missense variants of the GJB2 (Cx26), GJB6 (Cx30), and GJB3 (Cx31) connexin genes associated with DFNB1A. To evaluate accuracy of selected in silico tools (SIFT, FATHMM, MutationAssessor, PolyPhen-2, CONDEL, MutationTaster, MutPred, Align GVGD, and PROVEAN), we tested nine missense variants with previously confirmed clinical significance in a large cohort of deaf patients and control groups from the Sakha Republic (Eastern Siberia, Russia): Сх26: p.Val27Ile, p.Met34Thr, p.Val37Ile, p.Leu90Pro, p.Glu114Gly, p.Thr123Asn, and p.Val153Ile; Cx30: p.Glu101Lys; Cx31: p.Ala194Thr. We compared the performance of the in silico tools (accuracy, sensitivity, and specificity) by using the missense variants in GJB2 (Cx26), GJB6 (Cx30), and GJB3 (Cx31) genes associated with DFNB1A. The correlation coefficient (r) and coefficient of the area under the Receiver Operating Characteristic (ROC) curve as alternative quality indicators of the tested programs were used. The resulting ROC curves demonstrated that the largest coefficient of the area under the curve was provided by three programs: SIFT (AUC = 0.833, p = 0.046), PROVEAN (AUC = 0.833, p = 0.046), and MutationAssessor (AUC = 0.833, p = 0.002). The most accurate predictions were given by two tested programs: SIFT and PROVEAN (Ac = 89%, Se = 67%, Sp = 100%, r = 0.75, AUC = 0.833). The results of this study may be applicable for analysis of novel missense variants of the GJB2 (Cx26), GJB6 (Cx30), and GJB3 (Cx31) connexin genes.
Collapse
|
6
|
Abstract
OBJECTIVE To determine the prevalence and spectrum of Connexin 26 (GJB2) mutations in pre-lingual non-syndromic hearing loss (NSHL) patients in authors' centre and to review the data of Indian patients from the literature. METHODS Sanger sequencing of entire coding region contained in single exon (Exon 2) of GJB2 gene in 15 patients of NSHL. RESULTS GJB2 mutations were found in 40% (6/15) of NSHL patients, out of which mono-allelic were 33.3% (2/6). Bi-allelic GJB2 mutations were identified in 4 of 6 patients. Most common GJB2 mutation identified was c.71G > A(p.W24X), comprising 30% of the total GJB2 mutant alleles. Six studies involving 1119 patients with NSHL were reviewed and 4 of them have reported c.71G > A(p.W24X) as the commonest mutation while 2 studies found c.35delG as the commonest. GJB2 mutations accounted for 10.9%-36% cases of NSHL. Sixteen other mutations in GJB2 gene were reported in Indian patients out of which 6 mutations other than c.71G > A(p.W24X) viz., c.35delG, c.1A > G(p.M1V), c.127G > A(p.V43 M), c.204C > G(p.Y86X), c.231G > A(p.W77X) and c.439G > A(p.E147K) were identified in the present study. CONCLUSIONS Connexin 26 (GJB2) mutations are responsible for 19.4% of NSHL in Indian population. The c.71G > A(W24X) and c.35delG were the most prevalent GJB2 mutations accounting for 72.2% (234 of 324 total mutated alleles from 7 studies) and 15.4% (50 of 324 total mutated alleles from 7 studies) respectively. Thus, screening of these two common mutations in GJB2 gene by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) would greatly help in providing easy genetic diagnosis and help in genetic counseling of the families with NSHL.
Collapse
|