1
|
Plyuta VA, Sidorova DE, Koksharova OA, Khmel IA, Gnuchikh EY, Melkina OE. The effect of β-ionone on bacterial cells: the use of specific lux-biosensors. Res Microbiol 2024; 175:104214. [PMID: 38740236 DOI: 10.1016/j.resmic.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The diversity of the biological activity of volatile organic compounds (VOCs), including unsaturated ketone β-ionone, promising pharmacological, biotechnological, and agricultural agent, has aroused considerable interest. However, the functional role and mechanisms of action of VOCs remain insufficiently studied. In this work, the response of bacterial cells to the action of β-ionone was studied using specific bioluminescent lux-biosensors containing stress-sensitive promoters. We determined that in Escherichia coli cells, β-ionone induces oxidative stress (PkatG and Pdps promoters) through a specific response mediated by the OxyR/OxyS regulon, but not SoxR/SoxS (PsoxS promoter). It has been shown that β-ionone at high concentrations (50 μM and above) causes a weak induction of the expression from the PibpA promoter and slightly induces the PcolD promoter in the E. coli biosensors; the observed effect is enhanced in the ΔoxyR mutants. This indicates the presence of some damage to proteins and DNA. β-Ionone was found to inhibit the bichaperone-dependent DnaKJE-ClpB refolding of heat-inactivated bacterial luciferase in E. coli wild-type and ΔibpB mutant strains. In the cells of the Gram-positive bacterium Bacillus subtilis 168 pNK-MrgA β-ionone does not cause oxidative stress. Thus, in this work, the specificity of bacterial cell stress responses to the action of β-ionone was shown.
Collapse
Affiliation(s)
- Vladimir A Plyuta
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Daria E Sidorova
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Olga A Koksharova
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1-40, 119991 Moscow, Russia.
| | - Inessa A Khmel
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Evgeniy Y Gnuchikh
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Olga E Melkina
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| |
Collapse
|
2
|
Sazykin I, Naumova E, Azhogina T, Klimova M, Karchava S, Khmelevtsova L, Chernyshenko E, Litsevich A, Khammami M, Sazykina M. Glyphosate effect on biofilms formation, mutagenesis and stress response of E. сoli. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132574. [PMID: 37748310 DOI: 10.1016/j.jhazmat.2023.132574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
Glyphosate is the most widely used herbicide in the world. There is still no complete clarity about the degree of its genotoxicity and mutagenicity. In addition, its effect on bacterial biofilms, the main life form of soil microbial communities, has not been adequately studied. Toxicity and mutagenicity, as well as changes in the bacterial biofilm biomass, physiological activity, and the number of living cells in its composition in the presence of glyphosate were assessed using the Escherichia coli model. To assess damage to cellular components under the action of this pesticide, luminescent whole-cell bacterial lux-biosensors were used. Changes in the level of mutagenesis were studied by the method of rifampicin mutants. High integral toxicity of glyphosate, the average level of increased oxidative stress and protein damage were shown with the help of bacterial biosensors. All the studied concentrations of the pesticide completely or partially suppress the matrix and structure of the E. coli CDC F-50 biofilm formation, as well as the bacterial cells metabolic activity in the biofilm. At the concentrations of 6.7 and 0.67 g/L, glyphosate suppresses mutagenesis, probably due to general suppression of metabolism, and at the concentration of 0.0067 g/L, it enhances mutagenesis by six times compared with the spontaneous level. Suppression of bacterial biofilms formation, toxic effects on microorganisms, and mutagenesis enhancement by glyphosate can lead to negative consequences for natural microbiomes.
Collapse
Affiliation(s)
- Ivan Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Ekaterina Naumova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Tatiana Azhogina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Maria Klimova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Shorena Karchava
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Ludmila Khmelevtsova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Elena Chernyshenko
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Alla Litsevich
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Margarita Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Marina Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation.
| |
Collapse
|
3
|
Sazykina M, Barabashin T, Konstantinova E, Al-Rammahi AAK, Pavlenko L, Khmelevtsova L, Karchava S, Klimova M, Mkhitaryan I, Khammami M, Sazykin I. Non-corresponding contaminants in marine surface sediments as a factor of ARGs spread in the Sea of Azov. MARINE POLLUTION BULLETIN 2022; 184:114196. [PMID: 36219972 DOI: 10.1016/j.marpolbul.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to analyze the level and total toxicity of the most common pollutants in surface sediments and assess their impact on the occurrence of antibiotic resistance genes (ARGs) in the Sea of Azov. Biotesting using the whole-cell bacterial lux-biosensors showed high integral toxicity of surface sediments and the presence of genotoxicants and substances that cause oxidative stress and protein damage. Using cluster analysis, it was shown that the distribution of pollutants in the Sea of Azov depends on the type of surface sediments. The relative abundance and distribution of 14 ARGs in surface sediments were shown. Principle component analyses results suggest that non-corresponding contaminants do not exert direct influence on the ARGs abundance in the surface sediments of the Sea of Azov. Thus, the need to investigate the significance of non-corresponding pollutants in the selection and distribution of ARGs in the aquatic environment remains a pressing problem.
Collapse
Affiliation(s)
- Marina Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation.
| | - Timofey Barabashin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation; Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | | | | | - Liliya Pavlenko
- Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | - Lyudmila Khmelevtsova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Shorena Karchava
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Maria Klimova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Irina Mkhitaryan
- Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | - Margarita Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Ivan Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| |
Collapse
|
4
|
Sviridova DA, Machigov EA, Igonina EV, Zhoshibekova BS, Abilev SK. Studying the Mechanism of Dioxidine Genotoxicity Using Lux Biosensors of Esсherichia coli. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Constructing of Bacillus subtilis-Based Lux-Biosensors with the Use of Stress-Inducible Promoters. Int J Mol Sci 2021; 22:ijms22179571. [PMID: 34502476 PMCID: PMC8431380 DOI: 10.3390/ijms22179571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we present a new lux-biosensor based on Bacillus subtilis for detecting of DNA-tropic and oxidative stress-causing agents. Hybrid plasmids pNK-DinC, pNK-AlkA, and pNK-MrgA have been constructed, in which the Photorhabdus luminescens reporter genes luxABCDE are transcribed from the stress-inducible promoters of B. subtilis: the SOS promoter PdinC, the methylation-specific response promoter PalkA, and the oxidative stress promoter PmrgA. The luminescence of B. subtilis-based biosensors specifically increases in response to the appearance in the environment of such common toxicants as mitomycin C, methyl methanesulfonate, and H2O2. Comparison with Escherichia coli-based lux-biosensors, where the promoters PdinI, PalkA, and Pdps were used, showed generally similar characteristics. However, for B. subtilis PdinC, a higher response amplitude was observed, and for B. subtilis PalkA, on the contrary, both the amplitude and the range of detectable toxicant concentrations were decreased. B. subtilis PdinC and B. subtilis PmrgA showed increased sensitivity to the genotoxic effects of the 2,2'-bis(bicyclo [2.2.1] heptane) compound, which is a promising propellant, compared to E. coli-based lux-biosensors. The obtained biosensors are applicable for detection of toxicants introduced into soil. Such bacillary biosensors can be used to study the differences in the mechanisms of toxicity against Gram-positive and Gram-negative bacteria.
Collapse
|
6
|
Sazykin IS, Minkina TM, Khmelevtsova LE, Antonenko EM, Azhogina TN, Dudnikova TS, Sushkova SN, Klimova MV, Karchava SK, Seliverstova EY, Kudeevskaya EM, Konstantinova EY, Khammami MI, Gnennaya NV, Al-Rammahi AAK, Rakin AV, Sazykina MA. Polycyclic aromatic hydrocarbons, antibiotic resistance genes, toxicity in the exposed to anthropogenic pressure soils of the Southern Russia. ENVIRONMENTAL RESEARCH 2021; 194:110715. [PMID: 33444610 DOI: 10.1016/j.envres.2021.110715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The influence of anthropogenic pollution, particularly with polycyclic aromatic hydrocarbons (PAHs) on soil toxicity and spread of antibiotic resistance genes (ARGs) is extremely important nowadays. We studied 20 soil samples from a technogenically polluted site, municipal solid wastes (MSW) landfills, and rural settlements in the southwestern part of the Rostov Region of Russia. A close correlation was established between the results of biosensor testing for integral toxicity, the content of genes for the biodegradation of hydrocarbons, and the concentration of PAHs in soils. The relation between the quantitative content of ARGs and the qualitative and quantitative composition of PAHs has not been registered. Soils subjected to different types of the anthropogenic pressure differed in PAHs composition. The technogenic soils are the most polluted ones. These soils are enriched with 5 ring PAHs and carry the maximum variety of assayed ARGs, despite the fact that they do not receive household or medical waste.
Collapse
Affiliation(s)
- I S Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - T M Minkina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - L E Khmelevtsova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - E M Antonenko
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - T N Azhogina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - T S Dudnikova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - S N Sushkova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - M V Klimova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Sh K Karchava
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - E Yu Seliverstova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - E M Kudeevskaya
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - E Yu Konstantinova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - M I Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - N V Gnennaya
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - A A K Al-Rammahi
- Technical University Al-Furat Al-Awsat, 70, Hill St., Najaf, 54003, Iraq
| | - A V Rakin
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Bacterial Infections and Zoonoses, 96a, Naumburger St., Jena, D-07743, Germany
| | - M A Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation.
| |
Collapse
|