1
|
Balog K, Mizeranschi AE, Wanjala G, Sipos B, Kusza S, Bagi Z. Application potential of chicken DNA chip in domestic pigeon species - Preliminary results. Saudi J Biol Sci 2023; 30:103594. [PMID: 36874200 PMCID: PMC9975693 DOI: 10.1016/j.sjbs.2023.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Introducing the SNP technology to pigeon breeding will enhance the competitiveness of a sector that produces one of the healthiest and best quality meats. The present study aimed to test the applicability of the Illumina Chicken_50K_CobbCons array on 24 domestic pigeon individuals from the Mirthys hybrids and Racing pigeon breeds. A total of 53,313 SNPs were genotyped. Principal component analysis shows a significant overlap between the two groups. The chip performed poorly in this data set, with a call rate per sample of 0.474 (49%). The low call rate was likely due to an increase in the evolutionary distance. A total of 356 SNPs were retained after a relatively strict quality control. We have demonstrated that it is technically feasible to use a chicken microarray chip on pigeon samples. Presumably, with a larger sample size and by assigning phenotypic data, efficiency would be improved, allowing more thorough analyses, such as genome-wide association studies.
Collapse
Affiliation(s)
- Katalin Balog
- University of Debrecen, Doctoral School of Animal Science, Böszörményi út 138, 4032, Debrecen, Hungary.,Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | | | - George Wanjala
- University of Debrecen, Doctoral School of Animal Science, Böszörményi út 138, 4032, Debrecen, Hungary.,Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | - Bíborka Sipos
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Böszörményi út 138, 4032, Debrecen, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| |
Collapse
|
2
|
Dybus A, Kulig H, Yu YH, Lanckriet R, Proskura W, Cheng YH. CRY1 Gene Polymorphism and Racing Performance of Homing Pigeons. Animals (Basel) 2021; 11:2632. [PMID: 34573598 PMCID: PMC8466513 DOI: 10.3390/ani11092632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptochromes (CRY) are the family of proteins proposed as the putative magnetoreceptor molecules. In birds, among others in pigeons, CRY1 is widely expressed in a retina. Homing pigeons are known for their navigational abilities, and pigeon racing is a popular sport. So, the purpose of this study was to analyze the variability of the nucleotide sequence of the homing pigeon CRY1 gene, spanning the region coding the two amino acids W320 and W374 of Trp-triad, and estimate the relationship between genotypes and the racing performance. Investigations were carried out on 129 pigeons. Analysis of sequencing results indicated the AG to TT change within the seventh intron of CRY1 gene. Genotypes were determined by the forced PCR-RFLP method. The influence of detected polymorphism on the results of racing pigeons in 100-400 km flights was shown. The AG/TT individuals achieved significantly higher (p ≤ 0.05) mean values of ace points (AP) than the AG/AG ones. Regarding the detected nucleotide change localization, the polymorphism may be involved in CRY1 gene expression modulation. The AG to TT change in CRY1 gene may be considered as a potential genetic marker of racing performance in homing pigeons.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| | | | - Witold Proskura
- Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 71-270 Szczecin, Poland;
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| |
Collapse
|