1
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Li N, Liu Y, Yin Y, Gao S, Wu F, Yu C, Wang F, Kang B, Xu K, Jiao C, Yao M. Identification of CaPs locus involving in purple stripe formation on unripe fruit, reveals allelic variation and alternative splicing of R2R3-MYB transcription factor in pepper ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1140851. [PMID: 37056500 PMCID: PMC10089288 DOI: 10.3389/fpls.2023.1140851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The purple color of unripe pepper fruit is attributed to the accumulation of anthocyanins. Only a few genes controlling the biosynthesis and regulation of anthocyanins have been cloned in Capsicum. In this study, we performed a bulked segregant analysis of the purple striped trait using an F2 population derived from a cross between the immature purple striped fruit line Chen12-4-1-1-1-1 and the normal green fruit line Zhongxian101-M-F9. We mapped the CaPs locus to an 841.39 kb region between markers M-CA690-Xba and MCA710-03 on chromosome 10. CA10g11690 encodes an R2R3-MYB transcription factor that is involved in the biosynthesis of anthocyanins as the best candidate gene. Overexpression and silencing in transformed tobacco (Nicotiana tabacum) lines indicated that CA10g11690 is involved in the formation of purple stripes in the exocarp. A comparison of parental sequences identified an insertion fragment of 1,926 bp in the second intron region of Chen12-4, and eight SNPs were detected between the two parents. Additionally, there were 49 single nucleotide polymorphic variations, two sequence deletions, and four sequence insertions in the promoter region. We found that CA10g11690 undergoes alternative splicing and generates different transcripts. Thus, the functional transcript of CA10g11690 appeared to be primarily involved in the development of purple phenotype in the exocarp. Our data provide new insight into the mechanism of anthocyanin biosynthesis and a theoretical basis for the future breeding of purple striped pepper varieties.
Collapse
Affiliation(s)
- Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yabo Liu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyuan Wu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chuying Yu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Byoung−Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kai Xu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Filyushin MA, Dyachenko EA, Efremov GI, Kochieva EZ, Shchennikova AV. Variability and Expression Pattern of Phytoene Synthase (PSY) Paralogs in Pepper Species. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|