Faran SA, Hussain T, Khalid SH, Khan IU, Asif M, Ahmad J, Rehman A, Asghar S. Bile acid/fatty acid integrated nanoemulsomes for nonalcoholic fatty liver targeted lovastatin delivery: stability,
in-vitro, ex-vivo, and
in-vivo analyses.
Expert Opin Drug Deliv 2024;
21:779-796. [PMID:
38795359 DOI:
10.1080/17425247.2024.2361117]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND
Controlled and targeted drug delivery to treat nonalcoholic fatty liver disease (NAFLD) can benefit from additive attributes of natural formulation ingredients incorporated into the drug delivery vehicles.
METHODS
Lovastatin (LVN) loaded, bile acid (BA) and fatty acid (FA) integrated nanoemulsomes (NES) were formulated by thin layer hydration technique for synergistic and targeted delivery of LVN to treat NAFLD. Organic phase NES was comprised of stearic acid with garlic (GL) and ginger (GR) oils, separately. Ursodeoxycholic acid and linoleic acid were individually incorporated as targeting moieties.
RESULTS
Stability studies over 90 days showed average NES particle size, surface charge, polydispersity index, and entrapment efficiency values of 270 ± 27.4 nm, -23.8 ± 3.5 mV, 0.2 ± 0.04 and 81.36 ± 3.4%, respectively. Spherical NES were observed under a transmission electron microscope. In-vitro LVN release depicted non-fickian release mechanisms from GL and GR oils-based NES. Ex-vivo permeation of BA/FA integrated NES through isolated rat intestines showed greater flux than non-integrated ones.
CONCLUSION
Liver histopathology of experimental rats together with in-vivo lipid profiles and liver function tests illustrated that these NES possess the clinical potential to be promising drug carriers for NAFLD.
Collapse