1
|
Saparbaev E, Kopysov V, Aladinskaia V, Ferrieres V, Legentil L, Boyarkin OV. Identification and Quantification of Any Isoforms of Carbohydrates by 2D UV-MS Fingerprinting of Cold Ions. Anal Chem 2020; 92:14624-14632. [PMID: 33138380 DOI: 10.1021/acs.analchem.0c03122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biological functionality of isomeric carbohydrates may differ drastically, making their identifications indispensable in many applications of life science. Because of the large number of isoforms, structural assignment of saccharides is challenging and often requires a use of different orthogonal analytical techniques. We demonstrate that isomeric carbohydrates of any isoforms can be distinguished and quantified using solely the library-based method of 2D ultraviolet fragmentation spectroscopy-mass spectrometry (2D UV-MS) of cold ions. The two-dimensional "fingerprint" identities of UV transparent saccharides were revealed by photofragmentation of their noncovalent complexes with aromatic molecules. We assess the accuracy of the method by comparing the known relative concentrations of isomeric carbohydrates mixed in solution with the concentrations that were mathematically determined from the measured in the gas-phase fingerprints of the complexes. For the tested sets with up to five isomers of di- to heptasaccharides, the root-mean-square deviation of 3-5% was typically achieved. This indicates the expected level of accuracy in analysis of unknown mixtures for isomeric carbohydrates of similar complexity.
Collapse
Affiliation(s)
- Erik Saparbaev
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| | - Vladimir Kopysov
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| | - Viktoriia Aladinskaia
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| | - Vincent Ferrieres
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Laurent Legentil
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Solovyeva EM, Kopysov VN, Pereverzev AY, Lobas AA, Moshkovskii SA, Gorshkov MV, Boyarkin OV. Method for Identification of Threonine Isoforms in Peptides by Ultraviolet Photofragmentation of Cold Ions. Anal Chem 2019; 91:6709-6715. [DOI: 10.1021/acs.analchem.9b00770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elizaveta M. Solovyeva
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld.2 Moscow, 119334, Russia
| | - Vladimir N. Kopysov
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| | - Aleksandr Y. Pereverzev
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| | - Anna A. Lobas
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld.2 Moscow, 119334, Russia
| | | | - Mikhail V. Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld.2 Moscow, 119334, Russia
| | - Oleg V. Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Kopysov V, Gorshkov MV, Boyarkin OV. Identification of isoforms of aspartic acid residues in peptides by 2D UV-MS fingerprinting of cold ions. Analyst 2018; 143:833-836. [DOI: 10.1039/c7an02044a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use 2D UV-MS cold-ion spectroscopy for the identification of l-Asp, d-Asp, l-isoAsp and d-isoAsp residues in a fragment peptide derived from the hormone protein amylin.
Collapse
Affiliation(s)
- Vladimir Kopysov
- Laboratoire de Chimie Physique Moléculaire
- École Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | - Mikhail V. Gorshkov
- V. L. Talroze
- Institute of Energy Problems of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
| | - Oleg V. Boyarkin
- Laboratoire de Chimie Physique Moléculaire
- École Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
4
|
Tutorial: Correction of shifts in single-stage LC-MS(/MS) data. Anal Chim Acta 2018; 999:37-53. [DOI: 10.1016/j.aca.2017.09.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022]
|
5
|
Gorshkov AV, Pridatchenko ML, Perlova TY, Tarasova IA, Levitsky LI, Gorshkov MV, Evreinov VV. Applicability of the critical chromatography concept to proteomic problems. II. Effect of mobile phase on the separation of peptides and proteins taking into account the amino acid sequence. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s106193481610004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Holman SW, McLean L, Eyers CE. RePLiCal: A QconCAT Protein for Retention Time Standardization in Proteomics Studies. J Proteome Res 2016; 15:1090-102. [PMID: 26775667 DOI: 10.1021/acs.jproteome.5b00988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study introduces a new reversed-phase liquid chromatography retention time (RT) standard, RePLiCal (Reversed-phase liquid chromatography calibrant), produced using QconCAT technology. The synthetic protein contains 27 lysine-terminating calibrant peptides, meaning that the same complement of standards can be generated using either Lys-C or trypsin-based digestion protocols. RePLiCal was designed such that each constituent peptide is unique with respect to all eukaryotic proteomes, thereby enabling integration into a wide range of proteomic analyses. RePLiCal has been benchmarked against three commercially available peptide RT standard kits and outperforms all in terms of LC gradient coverage. RePLiCal also provides a higher number of calibrant points for chromatographic retention time standardization and normalization. The standard provides stable RTs over long analysis times and can be readily transferred between different LC gradients and nUHPLC instruments. Moreover, RePLiCal can be used to predict RTs for other peptides in a timely manner. Furthermore, it is shown that RePLiCal can be used effectively to evaluate trapping column performance for nUHPLC instruments using trap-elute configurations, to optimize gradients to maximize peptide and protein identification rates, and to recalibrate the m/z scale of mass spectrometry data post-acquisition.
Collapse
Affiliation(s)
- Stephen W Holman
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Lynn McLean
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
7
|
Gorshkov AV, Pridatchenko ML, Perlova TY, Tarasova IA, Gorshkov MV, Evreinov VV. Applicability of the critical chromatography concept to proteomics problems: I. Effect of the stationary phase and the size of the chromatographic column on the dependence of the retention time of peptides and proteins on the amino acid sequence. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934816010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tarasova IA, Goloborodko AA, Perlova TY, Pridatchenko ML, Gorshkov AV, Evreinov VV, Ivanov AR, Gorshkov MV. Application of Statistical Thermodynamics To Predict the Adsorption Properties of Polypeptides in Reversed-Phase HPLC. Anal Chem 2015; 87:6562-9. [DOI: 10.1021/acs.analchem.5b00595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina A. Tarasova
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton A. Goloborodko
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Tatyana Y. Perlova
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina L. Pridatchenko
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander V. Gorshkov
- N.
N. Semenov’s Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Victor V. Evreinov
- N.
N. Semenov’s Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander R. Ivanov
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mikhail V. Gorshkov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141707 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
9
|
Kopysov V, Makarov A, Boyarkin OV. Colors for Molecular Masses: Fusion of Spectroscopy and Mass Spectrometry for Identification of Biomolecules. Anal Chem 2015; 87:4607-11. [DOI: 10.1021/acs.analchem.5b00822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Vladimir Kopysov
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexander Makarov
- Thermo Fisher Scientific, Hanna-Kunath
Strasse 11, 28199 Bremen, Germany
| | - Oleg V. Boyarkin
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|