1
|
Jiang PY, Yuan L, Liu DX, Yu HL, Bi XJ, Lv Q, Yang Y, Liu CC. Revealing nitrogenous VX metabolites and the whole-molecule VX metabolism in the urine of guinea pigs. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134400. [PMID: 38691927 DOI: 10.1016/j.jhazmat.2024.134400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
VX, a well-known organophosphorus nerve agent (OPNA), poses a significant threat to public safety if employed by terrorists. Obtaining complete metabolites is critical to unequivocally confirm its alleged use/exposure and elucidate its whole-molecular metabolism. However, the nitrogenous VX metabolites containing 2-diisopropylaminoethyl moiety from urinary excretion remain unknown. Therefore, this study applied a newly developed untargeted workflow platform to discover and identify them using VX-exposed guinea pigs as animal models. 2-(N,N-diisopropylamino)ethanesulfonic acid (DiPSA) was revealed as a novel nitrogenous VX metabolite in urine, and 2-(Diisopropylaminoethyl) methyl sulfide (DAEMS) was confirmed as another in plasma, indicating that VX metabolism differed between urine and plasma. It is the first report of a nitrogenous VX metabolite in urine and a complete elucidation of the VX metabolic pathway. DiPSA was evaluated as an excellent VX exposure biomarker. The whole-molecule VX metabolism in urine was characterized entirely for the first time via the simultaneous quantification of DiPSA and two known P-based biomarkers. About 52.1% and 32.4% of VX were excreted in urine as P-based and nitrogenous biomarkers within 24 h. These findings provide valuable insights into the unambiguous detection of OPNA exposure/intoxication and human and environmental exposure risk assessment.
Collapse
Affiliation(s)
- Pei-Yu Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ling Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Dong-Xin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiao-Jing Bi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qiao Lv
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
2
|
Bouchouareb K, Combès A, Pichon V. Determination of nerve agent biomarkers in human urine by a natural hydrophobic deep eutectic solvent-parallel artificial liquid membrane extraction technique. Talanta 2022; 249:123704. [PMID: 35738205 DOI: 10.1016/j.talanta.2022.123704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Alkyl methyl phosphonic acids (AMPAs) are the major metabolites of organophosphorus nerve agents. A method based on the use of natural hydrophobic deep eutectic solvents as supported liquid membrane in parallel artificial liquid microextraction (PALME) combined with LC-MS/MS analysis was developed and applied to their extraction from urine samples. PALME is a miniaturized liquid-phase extraction method performed in a multiwell plate format where the aqueous sample and the aqueous acceptor phase are separated by a flat membrane impregnated with an organic solvent. In this study, we investigated the possibility of replacing the harmful conventional organic solvent by an emerging green solvent, a coumarin/thymol-based deep eutectic solvent, in ordered to raise the greenness of the sample preparation method. Linear response was obtained in an interval of 0.5, 5 or 10-100 ng/ml depending on the AMPAs with a determination coefficients (R2s) ranging from 0.9751 to 0.9989 for their determination in not treated urine samples. Enrichment factors (EFs) up to 12.65 were obtained, and repeatability was within 8.90-16.28% RSD (n = 12). The limit of quantifications (LOQs: S/N ≥ 10) of the whole analytical procedure were in the range from 0.04 to 5.35 ng/ml. In addition to its good sensitivity, the presented method permitted the treatment of 192 samples in 120 min (equivalent to 37.5 s/sample), which places it as one of the most powerful preparation technique for biomonitoring of civilian or military people exposed to nerve agents in case of public health emergency. Indeed, the developed procedure combined sensitivity, high-throughput, greenness, simplicity and practicality for the determination of five acidic polar AMPAs in urine samples.
Collapse
Affiliation(s)
- Khirreddine Bouchouareb
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Campus UPMC, Paris, France.
| |
Collapse
|
3
|
Abstract
The areas of application of modern bioanalytical chromatography–mass spectrometry are so extensive that any attempt to systematize them becomes subjective. It would be more correct to say that there is no such area of biology and medicine where chromatography–mass spectrometry would not find application. This article focuses on the areas of application of this technique that are either relatively new or insufficiently covered in recent reviews. State-of-the-art bioanalytical techniques have become multitargeted in terms of analytes and standardized in terms of matrices. The ability to detect trace concentrations of analytes in the presence of a huge number of biomatrix macrocomponents using chromatography–mass spectrometry is especially important for bioanalytical chemistry. In the target-oriented determination of persistent organic pollutants by chromatography–mass spectrometry, the main problem is the expansion of the list of analytes, including isomers. In the detection of exposures to unstable toxicants, the fragmented adducts of xenobiotics with biomolecules become target biomarkers along with hydrolytic metabolites. The exposome reflects the general exposure of a human being to total xenobiotics and the metabolic status reflects the physiological state of the body. Chromatography–mass spectrometry is a key technique in metabolomics. Metabolomics is currently used to solve the problems of clinical diagnostics and anti-doping control. Biological sample preparation procedures for instrumental analysis are being simplified and developed toward increasing versatility. Proteomic technologies with the use of various versions of mass spectrometry have found application in the development of new methods for diagnosing coronavirus infections.
Collapse
Affiliation(s)
- E. I. Savelieva
- Research Institute of Hygiene, Occupational Pathology, and Human Ecology, Federal Medical Biological Agency, 188663 pos. Kuz’molovskii, Vsevolozhskii region, Leningrad oblast Russia
| |
Collapse
|
4
|
Leninskii MA, Shachneva MD, Savel’eva EI, Koryagina NL. Separation and Preconcentration Methods for the Determination of Highly Toxic Organic Compounds (Poisons). JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821090070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Extended retrospective detection of regenerated sarin (GB) in rabbit blood and the IMPA metabolite in urine: a pharmacokinetics study. Arch Toxicol 2021; 95:2403-2412. [PMID: 34032868 DOI: 10.1007/s00204-021-03085-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Long-term retrospective monitoring of exposure to organophosphorus nerve agents is challenging. We recently developed two highly sensitive analytical methods for regenerated sarin (GB) nerve agent in blood and its primary metabolite, isopropyl-methylphosphonic acid (IMPA), in urine. These methods were implemented in a toxicokinetics study carried out with sarin injected (i.v.) to rabbits at doses corresponding to 0.1, 0.5 or 0.9 LD50. The time frame for monitoring regenerated sarin from blood was 70 days for 0.1 LD50 and 0.5 LD50 and 77 days for 0.9 LD50, where rapid elimination occurred in the first 8 days with an initial average half-life of 1.2 days, followed by a second, slower elimination, with a terminal average half-life of 8.4 days. The time frame for monitoring IMPA in urine was 7, 15 and 16 days for 0.1 LD50, 0.5 LD50 and 0.9 LD50 intoxications, respectively. Rapid elimination of IMPA in urine occurred after exposure, with an average half-life of ~ 0.8 days on days 2-6. For the first time, a slower elimination route for IMPA, with an average half-life of ~ 4 days from day 6 onwards, was revealed. Both IMPA and regenerated sarin pharmacokinetics exhibit linearity with dose. The overlaid pharmacokinetic profiles of regenerated sarin in blood along with IMPA in urine emphasize the dominance of IMPA with a rapid decay in urine in the first week and the slower long-term decay of protein-bound sarin later in blood. To our knowledge, the two new sensitive methods exhibit the longest monitoring time frame reported in biological samples.
Collapse
|
6
|
Blanca M, Shifrovitch A, Dachir S, Lazar S, Elgarisi M, Marder D, Shamai Yamin T, Baranes S, Avraham M, Dekel Jaoui H, Dagan S, Weissberg A. Highly sensitive retrospective determination of organophosphorous nerve agent biomarkers in human urine implemented in vivo in rabbit. Arch Toxicol 2020; 94:3033-3044. [PMID: 32627075 DOI: 10.1007/s00204-020-02827-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022]
Abstract
Highly toxic organophosphorous nerve agents (OPAs) have been used in several armed conflicts and terror attacks in the last few decades. A new method for retrospective determination of alkyl methylphosphonic acid (AMPA) metabolites in urine after exposure to VX, GB and GF nerve agents was developed. This method enables a rapid, sensitive and selective determination of trace levels of the nerve agent biomarkers ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA) and cyclohexyl methylphosphonic acid (CMPA) in urine. The new technique involves a unique combination of two solid phase extraction (SPE) cartridges: a Ba/Ag/H cartridge for urine interference removal, and a ZrO2 cartridge for selective reconstitution and enrichment of the AMPAs. Extraction of AMPAs from the ZrO2 cartridge was accomplished with a 1% ammonium hydroxide (NH4OH) solution and was followed by analysis via liquid chromatography-mass spectrometry (LC-MS). The limits of quantitation (LOQs) were in the range of 10-100 pg/mL with recoveries of 64-71% (± 5-19%) after fast sample preparation and a total LC-MS analysis cycle time of 15 min and 13 min, respectively. This method was successfully applied in vivo in a rabbit that was exposed to 0.5 LD50 (7.5 µg/kg, i.v.) sarin for retrospective monitoring of the IMPA metabolite in urine. For the first time, IMPA was determined in rabbit urine samples for 15 days post-exposure, which is longer than any reported post-exposure method for AMPAs. To the best of our knowledge, this new method is the most sensitive and rapid for AMPA determination in urine by LC-MS/MS analysis.
Collapse
Affiliation(s)
- Merav Blanca
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel.
| | - Avital Shifrovitch
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Shlomit Dachir
- Department of Pharmacology, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Maor Elgarisi
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Dana Marder
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Tamar Shamai Yamin
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Shlomi Baranes
- Department of Pharmacology, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Meir Avraham
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Hani Dekel Jaoui
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Shai Dagan
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| | - Avi Weissberg
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), P.O.B. 19, Ness Ziona, Israel
| |
Collapse
|
7
|
Otsuka M, Tsuge K, Seto Y, Miyaguchi H, Uchiyama M. Analysis of degradation products of nerve agents via post-pentafluorobenzylation liquid chromatography-tandem mass spectrometry. J Chromatogr A 2018; 1577:31-37. [PMID: 30274693 DOI: 10.1016/j.chroma.2018.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023]
Abstract
In the work reported here, a screening procedure was developed for the detection and identification of RMPAs (nerve agent degradation products) after pentafluorobenzylation using liquid chromatography-tandem mass spectrometry (LC-MS/MS). With this method, all RMPAs, including highly hydrophilic types such as methylphosphonic acid (MPA) and ethyl methylphosphonic acid (EMPA), were sufficiently retained in commonly used reversed-phase columns (retention times: 15.7 and 11.0 min.), and the presence of RMPAs was determined more efficiently than with the conventional direct LC-MS/MS method. The detection limits of RMPAs using this approach (<33 ng) were mostly superior to those observed with direct LC-MS/MS (<74 ng) and gas chromatography-mass spectrometry (GC-MS) after pentafluorobenzylation (<1.1 μg). The applicability of newly developed method toward real samples was evaluated via recovery tests involving urine/serum and wipe tests on various surfaces.
Collapse
Affiliation(s)
- Mai Otsuka
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Koichiro Tsuge
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Yasuo Seto
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Hajime Miyaguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|