1
|
Melekhin AO, Tolmacheva VV, Goncharov NO, Apyari VV, Parfenov MY, Bulkatov DP, Dmitrienko SG, Zolotov YA. Rapid multi-residue LC-MS/MS determination of nitrofuran metabolites, nitroimidazoles, amphenicols, and quinolones in honey with ultrasonic-assisted derivatization - magnetic solid-phase extraction. J Pharm Biomed Anal 2024; 237:115764. [PMID: 37804641 DOI: 10.1016/j.jpba.2023.115764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
A rapid multi-residue LC-MS/MS method for the identification and determination of banned veterinary drugs in honey was developed. A total of 31 investigated veterinary drugs belonging to 4 classes including nitrofurans metabolites, nitroimidazoles, amphenicols, and quinolones were quantified by LC-MS/MS with ESI using one single injection. The sample preparation included treatment with 5-nitro-2-furaldehyde (5-NFA) in a thermostated ultrasonic bath (80 °C, 0.5М НСl, 20 min) to liberate matrix-bound residues of nitrofurans. Magnetic hypercrosslinked polystyrene (HCP/Fe3O4) was proposed for the solid-phase extraction and clean-up of target analytes prior to LC-MS/MS analysis. To evaluate and validate the performance of method, the criteria of the Decision (EC) no 2002/657 were applied. The LOQs of the examined analytes range from 0.3 to 1 μg kg-1, which indicates good sensitivity to quantify the target compounds in honey. The recoveries of veterinary drugs from 1 g of honey with 50 mg of the sorbent are 97-109% for nitrofuran metabolites, 84-115% for nitroimidazoles, 86-103% for amphenicols, and 97-118% for quinolones. The relative standard deviations of intra-day and inter-day precision analyses (RSD) are less than 16%. This methodology was applied to real honey samples and trace levels of some veterinary drugs were detected.
Collapse
Affiliation(s)
- A O Melekhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia; Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - V V Tolmacheva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - N O Goncharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - V V Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia.
| | - M Yu Parfenov
- Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - D P Bulkatov
- Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - S G Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - Yu A Zolotov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia
| |
Collapse
|
2
|
Manaenkov O, Nikoshvili L, Bykov A, Kislitsa O, Grigoriev M, Sulman M, Matveeva V, Kiwi-Minsker L. An Overview of Heterogeneous Catalysts Based on Hypercrosslinked Polystyrene for the Synthesis and Transformation of Platform Chemicals Derived from Biomass. Molecules 2023; 28:8126. [PMID: 38138614 PMCID: PMC10745566 DOI: 10.3390/molecules28248126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Platform chemicals, also known as chemical building blocks, are substances that serve as starting materials for the synthesis of various value-added products, which find a wide range of applications. These chemicals are the key ingredients for many fine and specialty chemicals. Most of the transformations of platform chemicals are catalytic processes, which should meet the requirements of sustainable chemistry: to be not toxic for humans, to be safe for the environment, and to allow multiple reuses of catalytic materials. This paper presents an overview of a new class of heterogeneous catalysts based on nanoparticles of catalytically active metals stabilized by a polymer matrix of hypercrosslinked polystyrene (HPS). This polymeric support is characterized by hierarchical porosity (including meso- and macropores along with micropores), which is important both for the formation of metal nanoparticles and for efficient mass transfer of reactants. The influence of key parameters such as the morphology of nanoparticles (bimetallic versus monometallic) and the presence of functional groups in the polymer matrix on the catalytic properties is considered. Emphasis is placed on the use of this class of heterogeneous catalysts for the conversion of plant polysaccharides into polyols (sorbitol, mannitol, and glycols), hydrogenation of levulinic acid, furfural, oxidation of disaccharides, and some other reactions that might be useful for large-scale industrial processes that aim to be sustainable. Some challenges related to the use of HPS-based catalysts are addressed and multiple perspectives are discussed.
Collapse
Affiliation(s)
- Oleg Manaenkov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Linda Nikoshvili
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Alexey Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Olga Kislitsa
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Maxim Grigoriev
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Mikhail Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Valentina Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Lioubov Kiwi-Minsker
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
- Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB-EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Davletbaeva IM, Li ED, Faizulina ZZ, Sazonov OO, Mikhailov OV, Safiullin KR, Davletbaev RS. Microporous Block Copolymers Modified with Cu(II)-Coordinated Polyethylene Oxide-Substituted Silicas for Analytical Sensors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6810. [PMID: 37895791 PMCID: PMC10608287 DOI: 10.3390/ma16206810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
The influence of stable-to-self-condensation Cu(II)-coordinated polyoxyethylene-substituted silicas (ASiP-Cu-0.5) on the synthesis of microporous block copolymers (OBCs) whose structural feature is the existence of coplanar polyisocyanate blocks of acetal nature (O-polyisocyanates) and a flexible-chain component of amphiphilic nature was studied. The use of ASiP-Cu-0.5 increased the yield of O-polyisocyanate blocks and the microphase separation of OBC. The resulting OBCs turned out to be effective sorbents for the analytical reagents PAN and PHENAZO, which, being in the micropore cavity, interacted with copper(II) and magnesium ions. To reduce the thickness of the selective OBC layer ten-fold and simplify the technology for obtaining analytical test systems, polyethylene terephthalate was used as a substrate for applying OBC. It was found that the increased sensitivity of the resulting test systems was due to the fact that in thin reaction layers, the efficiency of the formation of O-polyisocyanate blocks noticeably increased.
Collapse
Affiliation(s)
- Ilsiya M. Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Ekaterina D. Li
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Zulfiya Z. Faizulina
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Oleg O. Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Oleg V. Mikhailov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Karim R. Safiullin
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Ruslan S. Davletbaev
- Material Science and Technology of Materials Department, Kazan State Power Engineering University, Krasnoselskaya str., 51, 420066 Kazan, Russia;
| |
Collapse
|
4
|
Davletbaeva IM, Faizulina ZZ, Li ED, Sazonov OO, Efimov SV, Klochkov VV, Arkhipov AV, Davletbaev RS. Silicas with Polyoxyethylene Branches for Modification of Membranes Based on Microporous Block Copolymers. MEMBRANES 2023; 13:642. [PMID: 37505008 PMCID: PMC10383942 DOI: 10.3390/membranes13070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
We have synthesized cubic and linear polysiloxanes containing polyoxyethylene branches (ASiP-Cu) using tetraethoxysilane, polyoxyethylene glycol, and copper chloride as precursors; the products are stable to self-condensation. The effect of copper chloride content on the chemical structure of ASiP-Cu has been established. A special study was aimed at defining the modifying effect of ASiP-Cu on the sorption characteristics of membranes based on microporous, optically transparent block copolymers (OBCs). These OBCs were produced using 2,4-toluene diisocyanate and block copolymers of ethylene and propylene oxides. The study demonstrated significantly increased sorption capacity of the modified polymers. On the basis of the modified microporous block copolymers and 1-(2-pyridylazo)-2-naphthol (PAN) analytical reagent, an analytical test system has been developed. Additionally, the modified OBCs have the benefit of high diffusion permeability for molecules of organic dyes and metal ions. It has been shown that the volume of voids and structural features of their internal cavities contribute to the complex formation reaction involving PAN and copper chloride.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Zulfiya Z Faizulina
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Ekaterina D Li
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Sergey V Efimov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Vladimir V Klochkov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Alexander V Arkhipov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya St., 195251 St. Petersburg, Russia
| | - Ruslan S Davletbaev
- Material Science and Technology of Materials Department, Kazan State Power Engineering University, 51 Krasnoselskaya Str., 420066 Kazan, Russia
| |
Collapse
|
5
|
Kirillov AS, Dubrov EN, Gorshkov NI, Krasikov VD. Microporous Hypercrosslinked Polystyrene Sorbents in Sorption Purification of Water-Soluble Polymers from Low-Molecular-Weight Compounds. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222080213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
Davletbaeva IM, Sazonov OO, Dzhabbarov IM, Zaripov II, Davletbaev RS, Mikhailova AV. Optically Transparent Polydimethylsiloxane-Ethylene Oxide-Propylene Oxide Multiblock Copolymers Crosslinked with Isocyanurates as Organic Compound Sorbents. Polymers (Basel) 2022; 14:polym14132678. [PMID: 35808721 PMCID: PMC9269152 DOI: 10.3390/polym14132678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
New crosslinked (polydimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate multiblock copolymers (MBCs) were synthesized, and their supramolecular structure and sorption characteristics were studied. It was found that the interaction of PPEG and D4 leads to polyaddition of D4 initiated by potassium-alcoholate groups. The use of the amphiphilic silica derivatives associated in an oligomeric medium (ASiPs) leads to structuring of the MBC due to the transetherification reaction of the terminal silanol groups of the MBC with ASiPs. It was established that the supramolecular structure of an MBC is built according to the “core-shell” structure. The obtained polymers were tested as sorbents for the development of new methods for the concentration and determination of inorganic compounds. The efficiency of sorption of reagents increased with an increase in the “thickness” of the polydimethylsiloxane component of the “shell” and with a decrease in the size of the polyisocyanurate “core”. The use of the obtained polymers as adsorbents of organic reagents is promising for increasing the efficiency of field methods of chemical testing and inorganic analysis, including the determination of the elemental composition and the detection of traces of contamination.
Collapse
Affiliation(s)
- Ilsiya M. Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
- Correspondence:
| | - Oleg O. Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ilgiz M. Dzhabbarov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ilnaz I. Zaripov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ruslan S. Davletbaev
- Department of Materials Science, Welding and Industrial Safety, Kazan National Research Technical University Named after A.N. Tupolev, Kazan 420111, Russia;
| | - Alla V. Mikhailova
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
7
|
Melekhin AO, Tolmacheva VV, Goncharov NO, Apyari VV, Dmitrienko SG, Shubina EG, Grudev AI. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography-tandem mass spectrometry. Food Chem 2022; 387:132866. [PMID: 35397265 DOI: 10.1016/j.foodchem.2022.132866] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
Abstract
A quantitative multi-class multi-residue analytical method was developed for the determination of veterinary drugs in milk by high-performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). A total of 132 veterinary drugs investigated belonged to almost 15 classes including sulfonamides, β-lactams, tetracyclines, quinolones, macrolides, nitrofurans, nitroimidazoles, phenicols, lincosamides, pleuromutilins, macrocyclic lactones, quinoxaline antibiotics, benzimidazoles, anthelmintics, coccidiostats and some others. A magnetic solid-phase extraction procedure was developed using magnetic hypercrosslinked polystyrene (HCP/Fe3O4) for the sample preparation prior to HPLC-MS/MS without deproteinization step. The results indicated recoveries of 85-107% for 14 sulfonamides, 85-120% for 13 β-lactams, 89-115% for 4 tetracyclines, 82-119% for 14 quinolones, 82-115% for 8 macrolides, 97-109% for 4 nitrofurans, 84-115% for 10 nitroimidazoles, 89-114% for 3 phenicols, 86-111% for 3 lincosamides, 97-102% for 2 pleuromutilins, 72-88% for 4 macrocyclic lactones, 87-104% for 4 quinoxaline antibiotics, 76-119% for 21 benzimidazoles, 79-115% for 12 anthelmintics, 81-118% for 12 coccidiostats and 75-119 % for 5 unclassified drugs, with relative standard deviations (RSDs) of less than 20%, and the LOQs ranged from 0.05 to 1 μg kg-1. This methodology was then applied to field-collected real milk samples and trace levels of some veterinary drugs were detected.
Collapse
Affiliation(s)
- A O Melekhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia; Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622 Moscow, Russia
| | - V V Tolmacheva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - N O Goncharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - V V Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia.
| | - S G Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - E G Shubina
- Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622 Moscow, Russia
| | - A I Grudev
- Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622 Moscow, Russia
| |
Collapse
|
8
|
Melekhin AO, Tolmacheva VV, Shubina EG, Dmitrienko SG, Apyari VV, Grudev AI, Zolotov YA. A New Derivatizing Agent for Determining Nitrofuran Metabolites in Chicken Eggs by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821110071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Varma NN, Naidu CG, Ramachandra B, Swamy AM. HPLC Bioassay of Elvitegravir using a Molecularly Imprinted Polymer Based Solid Phase Extraction in RAT Plasma: Application to Pharmacokinetic Studies. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Melekhin AO, Tolmacheva VV, Shubina EG, Dmitrienko SG, Apyari VV, Grudev AI. Using Hypercrosslinked Polystyrene for the Multicomponent Solid-Phase Extraction of Residues of 63 Veterinary Preparations in Their Determination in Chicken Meat by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Melekhin AO, Tolmacheva VV, Shubina EG, Dmitrienko SG, Apyari VV, Grudev AI. Determination of nitrofuran metabolites in honey using a new derivatization reagent, magnetic solid-phase extraction and LC-MS/MS. Talanta 2021; 230:122310. [PMID: 33934775 DOI: 10.1016/j.talanta.2021.122310] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/14/2023]
Abstract
In this study, 5-nitro-2-furaldehyde (5-NFA) was proposed as a new derivatizing agent for nitrofuran metabolites. It reacts with nitrofuran metabolites producing the parent nitrofurans (furazolidone, furaltadone, nitrofurantoin, and nitrofurazone). Magnetic hypercrosslinked polystyrene (HCP/Fe3O4) was first used for magnetic solid phase extraction (MSPE) clean-up before the determination of nitrofuran metabolite derivatives in honey via LC-MS/MS. Main parameters affecting the derivatization and MSPE efficiency were investigated in detail and the optimal conditions were found. The method was validated using honey spiked with the four metabolites at 1, 2 and 200 μg kg-1. Recoveries of >85% were achieved for the all analytes. The matrix calibration curve was fitted with the correlation coefficient (R2) > 0.99 in the range of 1-200 μg kg-1. Precision values expressed as relative standard deviation (RSD) were <12% and <15% for intra-day and inter-day precision, respectively. The limits of detection (LODs) for the nitrofuran metabolites were of 0.1-0.3 μg kg-1 and the limits of quantitation (LOQs) were of 0.3-1.0 μg kg-1. The proposed LC-MS/MS method was applied to the analysis of real honey samples.
Collapse
Affiliation(s)
- Artem O Melekhin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia; Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622, Moscow, Russia
| | - Veronika V Tolmacheva
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia
| | - Elena G Shubina
- Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622, Moscow, Russia
| | - Stanislava G Dmitrienko
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia
| | - Vladimir V Apyari
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia.
| | - Artyom I Grudev
- Central Scientific Methodological Veterinary Laboratory, Orangereynaya st., 23, 111622, Moscow, Russia
| |
Collapse
|
12
|
Tolmacheva VV, Yarykin DI, Gorbunova MV, Apyari VV, Dmitrienko SG, Zolotov YA. Preconcentration of Catecholamins on Hypercrosslinked Polystyrene and Their Determination by High-Performance Liquid Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819090107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|