1
|
Li Y, Si D, Sabier M, Liu J, Si J, Zhang X. Guideline for screening antioxidant against lipid‐peroxidation by spectrophotometer. EFOOD 2023. [DOI: 10.1002/efd2.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
2
|
2D Nanomaterial—Based Electrocatalyst for Water Soluble Hydroperoxide Reduction. Catalysts 2022. [DOI: 10.3390/catal12080807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hydroperoxides generated on lipid peroxidation are highly reactive compounds, tend to form free radicals, and their elevated levels indicate the deterioration of lipid samples. A good alternative to the classical methods for hydroperoxide monitoring are the electroanalytical methods (e.g., a catalytic electrode for their redox-transformation). For this purpose, a series of metal oxides—doped graphitic carbon nitride 2D nanomaterials—have been examined under mild conditions (pH = 7, room temperature) as catalysts for the electrochemical reduction of two water-soluble hydroperoxides: hydrogen peroxide and tert-butyl hydroperoxide. Composition of the electrode modifying phase has been optimized with respect to the catalyst load and binding polymer concentration. The resulting catalytic electrode has been characterized by impedance studies, cyclic voltammetry and chronoamperometry. Electrocatalytic effect of the Co-g-C3N4/Nafion modified electrode on the electrochemical reduction of both hydroperoxides has been proved by comparative studies. An optimal range of operating potentials from −0.215 V to −0.415 V (vs. RHE) was selected with the highest sensitivity achieved at −0.415 V (vs. RHE). At this operating potential, a linear dynamic range from 0.4 to 14 mM has been established by means of constant-potential chronoamperometry with a sensitivity, which is two orders of magnitude higher than that obtained with polymer-covered electrode.
Collapse
|
3
|
Gautam T, Wu S, Ma J, Zhao R. Potential Matrix Effects in Iodometry Determination of Peroxides Induced by Olefins. J Phys Chem A 2022; 126:2632-2644. [PMID: 35442038 DOI: 10.1021/acs.jpca.1c10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxides (H2O2, ROOR, and ROOH) are an important reaction intermediate involved in a number of natural processes, including atmospheric autoxidation and lipid peroxidation in oils and animal tissues. Iodometry is an established spectroscopic technique that has been widely used to quantify total peroxide concentration in food, indoor, and outdoor samples. Iodometry provides selectivity toward peroxides through a quantitative reaction between I- and peroxides to form I3- via a molecular iodine (I2) intermediate. However, equilibrium changes caused by a potential interaction between olefinic species and I2 can suppress I3- formation, thereby underestimating peroxide concentration. For the first time in the current study, this unrecognized interference posed by olefins (OEs) is systematically investigated to gauge its effects on the accuracy of iodometry. A number of model molecules were investigated. The interference was observed to be unique to OEs, but universally affecting different peroxide species such as H2O2, tert-butyl hydroperoxide, and aerosol-bound peroxides. A simple kinetic box model was built to explain this chemistry. The measured rate constant for 3-octenoic acid was found to be 0.84 ± 0.02 M-1 s-1. Overall, our results show matrix effects induced by OEs can underestimate peroxide concentration determined by iodometry for edible oils, indoor environments, and animal fat, but absent in most of the atmospheric samples. Nonetheless, our results point out the importance of this interfering chemistry in matrices enriched with OEs.
Collapse
Affiliation(s)
- Tania Gautam
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Jeff Ma
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Ran Zhao
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
4
|
Bakhsh EM, Bilal M, Ali M, Ali J, Wahab A, Akhtar K, Fagieh TM, Danish EY, Asiri AM, Khan SB. Synthesis of Activated Carbon from Trachycarpus fortunei Seeds for the Removal of Cationic and Anionic Dyes. MATERIALS 2022; 15:ma15061986. [PMID: 35329439 PMCID: PMC8948926 DOI: 10.3390/ma15061986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023]
Abstract
The removal of dyes from industrial effluents is one of the most important industrial processes that is currently on academic demand. In this project, for the first time, Trachycarpus fortunei seeds are used as biosources for the synthesis of activated carbon (AC) using physical as well as acid–base chemical methods. The synthesized AC was initially characterized by different instrumental techniques, such as FTIR, BET isotherm, SEM, EDX and XRD. Then, the prepared activated carbon was used as an economical adsorbent for the removal of xylenol orange and thymol blue from an aqueous solution. Furthermore, the effect of different parameters, i.e., concentration of dye, contact time, pH, adsorbent amount, temperature, adsorbent size and agitation speed, were investigated in batch experiments at room temperature. The analysis of different techniques concluded that the pyrolysis method created a significant change in the chemical composition of the prepared AC and the acid-treated AC offered a high carbon/oxygen composite, which is graphitic in nature. The removal of both dyes (xylenol orange and thymol blue) was increased with the increase in the dye’s initial concentration. Isothermal data suggested that the adsorption of both dyes follows the Langmuir model compared to the Freundlich model. The equilibrium time for AC biomass to achieve the removal of xylenol orange and thymol blue dyes was determined to be 60 min, and the kinetic data suggested that the adsorption of both dyes obeyed the pseudo-second order model. The optimal pH for thymol blue adsorption was pH 6, while it was pH 2 for xylenol orange. The adsorption of both dyes increased with the increase in the temperature. The influence of the adsorbent amount indicated that the adsorption capacity (mg/g) of both dyes reduced with the rise in the adsorbent amount. Thus, the current study suggests that AC prepared by an acid treatment from Trachycarpus fortunei seeds is a good, alternative, cost effective, and eco-friendly adsorbent for the effective removal of dyes from polluted water.
Collapse
Affiliation(s)
- Esraa M. Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.M.F.); (E.Y.D.); (A.M.A.)
| | - Muhammad Bilal
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; (M.A.); (J.A.)
- Correspondence: (M.B.); (S.B.K.)
| | - Maqsood Ali
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; (M.A.); (J.A.)
| | - Javed Ali
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; (M.A.); (J.A.)
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan;
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.M.F.); (E.Y.D.); (A.M.A.)
| | - Taghreed M. Fagieh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.M.F.); (E.Y.D.); (A.M.A.)
| | - Ekram Y. Danish
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.M.F.); (E.Y.D.); (A.M.A.)
| | - Abdullah M. Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.M.F.); (E.Y.D.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.B.); (K.A.); (T.M.F.); (E.Y.D.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (M.B.); (S.B.K.)
| |
Collapse
|